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Grundprobleme

Probleme der Kryptographie:

1 Datensicherheit Schutz vor unbefugtem Lesen von Daten.

2 Datenintegrität Schutz vor ungewollter Modifikation der
Daten.

3 Authentifikation Nachweis einer Identität in dem man
1 Etwas weiß
2 oder etwas besitzt
3 oder etwas ist.
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Definition (Kryptosystem)

Ein Paar (Enc,Dec) von polynomiellen Funktionen

Enc : K ×M→ C, (k , x) 7→ Enck(x)

und
Dec : K × C →M, (k , y) 7→ Deck(y)

mit den Mengen M, C,K (Klartext-,Chiffretext- und
Schlüsselmenge) heißt Kryptosystem, wenn zusätzlich die
Bedingung gilt

Deck ◦ Enck = IdM (∀k ∈ K)
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Definition

Definition

Ein Kryptosystem (Enc,Dec) über Bn bietet perfekte
Geheimhaltung, falls für jede Verteilung auf M von Nachrichten,
jeder Nachricht x und jeden auftretenden Chiffretext y gilt

Pr [M = x | C = y ] = Pr [M = x ]

Anders formuliert:

EncUn(x) ≡ EncUn(x ′) (x , x ′ ∈M)
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Definition

Lemma

Für ein Kryptosystem Π = (Enc,Dec) sind die folgenden Aussagen
äquivalent

1 Π bietet perfekte Geheimhaltung.

2 Für jede Verteilung auf M und allen x ∈M, y ∈ C gilt:

Pr [C = y | M = x ] = Pr [C = y ] .

3 Für jede Verteilung auf M und allen x0, x1 ∈M und c ∈ C
gilt

Pr [C = y | M = x0] = Pr [C = y | M = x1]
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Definition

Proof.

1.⇔ 2.: Einfache Umformung und Bayes.
1., 2.⇔ 3.:
’⇒’: Folgt direkt aus 2..
’⇐’: Sei eine beliebige Verteilung auf M und x0 ∈M und y ∈ C
gewählt. Definiere p := Pr [C = y | M = m0]. Dann gilt

Pr [C = y ] =
∑
x∈M

Pr [C = y | M = x ] · Pr [M = x ]

=
∑
x∈M

p Pr [M = x ]

= p

= Pr [C = y | M = x0]
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Satz von Shannon und Vernams One-Time-Pad

Lemma

Ein Kryptosystem (Enc,Dec) mit Klartextmenge M und
Schlüsselmenge K bietet perfekte Geheimhaltung, dann gilt

|K| ≥ |M|

Proof.

Annahme: |K| < |M|. Sei M gleichverteilt und y ∈ C ein
Chiffretext, der auftritt. Definiere

M(c) := {x | x = Deck(y), k ∈ K}

Es gilt |M(y)| ≤ |K| da wir jedem Element in M(c) ein Schlüssel
zuordnen können. Da |K| < |M| existiert ein x ∈ M\M(y) für das
gilt

Pr [M = x | C = y ] = 0 < Pr [M = x ]

im Widerspruch zur perfekten Geheimhaltung.
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Satz von Shannon und Vernams One-Time-Pad

Theorem (von Shannon)

Sei (Enc,Dec) ein Kryptosystem mit |K| = |M| = |C|. Dann
bietet das Kryptosysteme perfekte Geheimhaltung genau dann
wenn folgende Bedingungen gelten:

1. Die Schlüssel werden gleichverteilt gewählt, d. h. K ∼ UK.

2. Für alle Nachrichten x ∈ M und Chiffretexten y ∈ C existiert
genau ein k ∈ K mit y = Enck(x).
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Satz von Shannon und Vernams One-Time-Pad

Definition (One-Time-Pad)

Seien K =M = C = {0, 1}n für ein n ∈ N. Dann heisst
(Enc,Dec)

Enck(x) := x ⊕ k , Deck(y) := y ⊕ k

One-Time-Pad (Vernam Chiffre).
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Satz von Shannon und Vernams One-Time-Pad

Zusammenfassung

1 Satz von Shannon ⇒ One-Time-Pad perfekt geheim.

2 One-Time-Pad ist minimal (bzgl. K und ⊆) mit der
Eigenschaft der perfekten Geheimhaltung.

3 Ungünstige Lösung: Schlüssellänge = Nachrichtenlänge, wozu
dann den Schlüsselaustausch?

Ergebnis: Es werden lockere Definition von Sicherheit benötigt.
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Berechnungssicherheit

Die moderne Kryptographie kommt

1 Die Forderungen an die Sicherheit eines Kryptosystems
werden gelockert um praktikablere Chiffren zu konstruieren.

2 Mit Hilfe der Komplexitätstheorie werden die Angreifer
modelliert: Polynomialzeitalgorithmen mit Zufallszahlen
PPT .

3 Die Sicherheit der moderne Kryptographie basiert auf die
Schwierigkeit von gewissen Problemen (Reduktionsprinzip)
→ Einwegfunktionen.

4 Zuerst aber ein Schockergebnis:
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Einführung Perfekte Geheimhaltung Einwegfunktionen Pseudozufall Zero-Knowledge Beweise Fazit

Berechnungssicherheit

Theorem

Sei P = NP und (Enc,Dec) in Polynomialzeit berechenbar mit
einer Schlüssellänge von n = n(m) < m bei Nachrichtenlänge m.
Dann existiert ein Polynomialzeitalgorithmus A, so dass für alle
Eingabelängen m gilt: es gibt es ein Paar x0, x1 ∈ {0, 1}m mit

Pr
b∈R{0,1}
k∈R{0,1}

[A(Enck(xb)) = b] ≥ 3

4
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Einwegfunktionen

Definition (Vernachlässigbare Funktionen)

Sei ε : N→ [0, 1] ⊆ R, dann heisst ε vernachlässigbar, wenn
ε(n) = n−ω(1). D. h. für alle c > 0 existiert ein N ∈ N, sodass
ε(n) < n−c für alle n ≥ N gilt.
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Einwegfunktionen

Definition

Berechnungssicherheit bedeutet für ein Kryptosystem
(Enc,Dec) mit Schlüssellänge n und Eingabelänge m, dass wir für
alle A ∈ PPT eine vernachlässigbare Funktion ε haben, so dass (xi
bezeichne das i-te Bit von der Nachricht x):

Pr
k∈R{0,1}n
x∈R{0,1}m

[A(Ek(x)) = (i , b) s. d. xi = b] ≤ 1

2
+ ε(n)

gilt. Das heisst über kein Bit der Nachricht x kann ein Angreifer
mit nicht vernachlässigbarer Wahrscheinlichkeit Informationen in
Polynomialzeit errechnen.
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Einwegfunktionen

Definition (Einwegfunktionen)

Eine in Polynomialzeit berechenbare Funktion f : B∗ → B∗ heißt
Einwegfunktion, falls für alle A ∈ PPT gilt:

Pr
x∈RBn

y=f (x)

[
A(y) = x ′ mit f (x ′) = y

]
ist vernachlässigbar in n ∈ N.

Gilt |f (x)| = |x | für x ∈ B∗, so heisst f längenerhaltend. Ist f
eine injektive , längenerhaltende Einwegfunktion, dann heisst f
Einwegpermutation.

Vermutung: Es existiert eine Einwegfunktion.
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ist vernachlässigbar in n ∈ N.
Gilt |f (x)| = |x | für x ∈ B∗, so heisst f längenerhaltend. Ist f
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Einwegfunktionen

Theorem

Wenn P = NP dann existieren keine Einwegfunktionen.
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Einwegfunktionen

Einwegfunktion?

Eulersche ϕ-Funktion:

ϕ(n) := |{1 ≤ j < n | ggT(j , n) = 1}| =
∣∣∣(Z�nZ)∗∣∣∣ =: |Z∗

n |

Für n =
∏r

i=1 p
νi
i mit verschiedenen Primzahlen pi gilt:

ϕ(n) =
r∏

i=1

p
νi−1
i (pi − 1)

RSA-Kryptosystem

Für ein n ∈ N sei N = N(n) ∈ N eine zusammengesetzte Zahl mit n-Bits und e ∈ N
mit ggT(ϕ(n), e) = 1. I. d. R. N = p · q und p 6= q prim.

Enc(N,e)(x) := RSA(N,e)(x) := [xe ]N (x ∈ Z�N Z
∗

)

Der Empfänger berechnet ein geheim gehaltenes d (Privater Schlüssel) mit ed ≡ 1
mod ϕ(N).

Dec(N,e)(y) := [yd ]N

Kennt man den Wert von ϕ(N), so lässt sich d effizient mit dem euklidischen
Algorithmus bestimmen.
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Einwegfunktionen

Und diese Funktion?

Quadratische Reste:

QRn := {z ∈ Z∗n | ∃y ∈ Z∗n : y 2 = z}

Rabin-Kryptosystem

Sei N = PQ, P,Q > 2 prim und P,Q ≡ 3 mod 4. Verschlüsseln
ist das Quadrieren mod N und dechiffrieren ist das
Quadratwurzel ziehen in ZN .
Da der Empfänger die Faktorisierung von N kennt, kann er mit
Hilfe des chinesischen Restsatzes das Problem auf die simultane
Quadratwurzelbestimmung in ZP und ZQ reduzieren, welches sich
effizient lösen lässt (→ Tafel).
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Einwegfunktionen

Definition (Levins universelle Einwegfunktion)

Es ist fU Levins universelle Einwegfunktion wie folgt definiert:
Die Eingabe wird geeignet zerteilt: x = x1 · · · xlog n (n := |x |) mit
|xi | = n

log n für i = 1, . . . , log n. Sei (Mi )i∈N eine Abzählung aller
Turingmaschinen. Dann gilt

fU (x) = Mn2

1 (x1) · · ·Mn2

log n(xlog n)

wobei

Mt
i (x) =

{
Mi (x), Mi terminiert nach ≤ t Schritten.

0|x |, sonst

Theorem

Falls es eine Einwegfunktion gibt, dann ist fU eine Einwegfunktion.
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Einwegfunktionen

Theorem

Wenn Einwegfunktionen existieren, dann gibt es ein c ∈ N, sodass
es ein berechnungssicheres Kryptosystem (Enc,Dec) gibt, welches
eine Schlüssellänge von n und Nachrichtenlänge von nc hat.
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Einwegfunktionen

Zusammenfassung

1 Einwegfunktionen sind leicht zu berechnen, schwer
invertierbare Funktionen.

2 Existieren diese, so haben wir effizientere und sichere
Kryptosysteme.

3 Sicherheit nun Komplexitätstheoretisch definiert und
Resterfolgswahrscheinlichkeit eingeräumt (aber im
vernachlässigbaren ε Bereich)

4 Klassische Kryptographie und die Mathematik liefern
Kandidaten für Einwegfunktionen.
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Was ist Zufall?

1 Kolmogorow-Komplexität: x ∈ Bn ist zufällig, wenn es
keine Turingmaschine mit Beschreibungslänge < 0.99n gibt,
welche bei leerer Eingabe x ausgibt.

Ungeeignet da Unentscheidbar!

2 Ansatz der Statistiker: Erfüllen Zeichenkette die Gesetze der
Statistik? Gesetz der großen Zahl z. B.
Es gibt kryptographisch unsichere Verteilungen, welche dieses
erfüllen.
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Pseudozufallsgeneratoren

Die Antwort der Kryptographen

Definition (Pseudozufallsgenerator (PZG))

Seien G : B∗ → B∗, ` : N→ N in Polynomialzeit berechenbar und
gelte `(n) > n für alle n ∈ N. (G , `) heisst
Pseudozufallsgenerator (kurz: PZG) mit Dehnung `, wenn gilt
|G (x)| = `(|x |) für alle x ∈ B∗ und für alle A ∈ PPT existiert ein
vernachlässigbares ε, sodass∣∣∣Pr [A(G (Un)) = 1]− Pr

[
A(U`(n)) = 1

]∣∣∣ < ε(n) (n ∈ N)

gilt.
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Pseudozufallsgeneratoren

Theorem (Einwegfunktionen ⇒ PZG)

Existiert eine Einwegfunktion, dann existieren für alle Polynome `
mit `(n) > n für n ∈ N ein PZG (G , `).

Im folgendem wird dieser Satz für Einwegpermutationen gezeigt.
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Einführung Perfekte Geheimhaltung Einwegfunktionen Pseudozufall Zero-Knowledge Beweise Fazit

Pseudozufallsgeneratoren

Definition (Unvorhersehbarkeit)

Sei G : B∗ → B∗ mit Dehnung `. G und ` sind in Polynomialzeit
berechenbar. G heißt unvorhersehbar, wenn für alle B ∈ PPT
gilt:

Pr
x∈rBn

y=G(x)
i∈R [`(n)]

[B(1n, y1, . . . , yi−1) = yi ] ≤ 1/2 + ε(n)

mit vernachlässigbaren ε und n ∈ N.
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Konstruktion aus Einwegpermutation

Lemma (Yao)

Sei (G , `) ein PZG, dann existieren für alle A ∈ PPT ein
B ∈ PPT , so dass für alle n ∈ N und ε > 0 aus
Pr [A(G (Un))]− Pr

[
A(U`(n))

]
≥ ε, folgt

Pr
x∈R{0,1}n
y=G(x)
i∈R [`(n)]

[B(1n, y1, . . . , yi−1) = yi ] ≥ 1/2 + ε/`(n).
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Konstruktion aus Einwegpermutation

Theorem (G PZG ⇔ unvorhersehbar)

Seien G : B∗ → B∗ und ` : N→ N in Polynomialzeit berechenbar
und G habe die Dehnung `. Dann ist (G , `) ein PZG genau dann
wenn G unvorhersehbar ist.

Proof.

”⇒”: Angenommen (G , `) ist PZG und n ∈ N. Wenn y = (y1, . . . , y`(n)) ∈R B`(n)

zufällig gleichverteilt gewählt wurde, kann kein Bit vorhergesagt werden. Ist G
vorhersehbar, dann kann y = G(x) von y ∈R B`(n) unterschieden werden. Damit ist G
kein PZG.
”⇐”: Angenommen (G , `) ist kein PZG. Dann existiert ein A ∈ PPT mit

Pr [A(G(Un))]− Pr
[
A(U`(n))

]
≥ n−c

für eine Konstante c und ∞-vielen n. Die Betragsstriche in der Definition vom
Pseudozufallsgenerator lassen sich ggf. durch Übergang von A zu 1− A entfernen.
Mit dem Lemma von Yao gibt es für solche n ein B ∈ PPT welches mit
Wahrscheinlichkeit ≥ 1/2 + n−c/`(n) ein Bit vorhersagen kann. Da n−c/`(n) nicht
vernachlässigbar ist für große n folgt, dass G vorhersehbar ist.
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Konstruktion aus Einwegpermutation

Theorem (Goldreich-Levin Theorem)

Sei f : B∗ → B∗ eine Einwegpermutation. Dann gibt es für alle
A ∈ PPT ein vernachlässigbares ε mit

Pr
x∈RBn

r∈RBn

[
A(f (x), r) = x t · r =

n∑
i=1

xi ri = x � r

]
≤ 1/2 + ε(n)

für alle n ∈ N.
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Konstruktion aus Einwegpermutation

Theorem

Existiert eine Einwegpermutation, dann existiert ein PZG G mit
Dehnung n + 1.

Proof.

G (x , r) := f (x), r , x tr ist ein Pseudozufallsgenerator mit Dehnung
2n + 1. Denn G ist unvorhersehbar: die ersten 2n Bits von G (U2n)
sind zufällig unabhängig voneinander und das 2n + 1 Bit kann
wegen des Goldreich-Levin-Theorems nicht zuverlässig
vorhergesagt werden.
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Konstruktion aus Einwegpermutation

Theorem (PZGs mit polynomieller Dehnung)

Sei f eine Einwegpermutation, c ∈ N und x , r ∈ Bn, setze:

G (x , r) := r , f (x)t · r , f 2(x)t · r , . . . , f l(x)t · r

mit l = nc . Dann ist G ein PZG mit Dehnung l(2n) = n + nc .
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Einführung

Definition (Zero-Knowledge Beweise)

Sei L ∈ NP und M eine Turingmaschine, die in Polynomialzeit
läuft, mit

x ∈ L⇔ ∃u ∈ {0, 1}p(|x |) : M(x , h) = 1. (p Polynom)

M entscheidet also L mit Hilfe eines Zeugen u. Ein Paar (P,V )
von interaktiven Polynomialzeitalgorithmen heißt Zero-Knowledge
Beweis für L, falls die folgenden Eigenschaften erfüllt sind:
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Einführung

ZK-Beweise Eigenschaften

1 Vollständigkeit: Für jedes x ∈ L und Zertifikat u = u(x) gilt

Pr [outV 〈P(x , u),V (x)〉] ≥
2

3

Wobei 〈P(x , u),V (x)〉 die Interaktion zwischen P und V mit den gegebenen
Eingaben bezeichnet und outV I beschreibt die Ausgabe von V am Ende der
Interaktion I .

2 Zuverlässigkeit: Wenn x /∈ L, dann gilt für jede Strategie P∗ und Eingabe u,
dass

Pr [outV 〈P∗(x , u),V (x)〉] ≤
1

3

dabei ist P∗ in keiner Weise beschränkt.

3 Perfect-Zero-Knowledge-Eigenschaft: Für alle Verifizierstrategien V ∗ ∈ PPT
existiert ein S∗ mit erwarteter probabilistischer Polynomiallaufzeit, so dass für
alle x ∈ L und u Zeuge dafür gilt:

outV∗ 〈P(x , u),V ∗(x)〉 ≡ S∗(x)

Die Gleichheit bezieht sich auf die Gleichheit der Verteilungen. S∗ simuliert V ∗.
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Einführung

ZK-Beweis für Graphenisomorphie

Eingabe: Graphen G0,G1 mit V (Gi ) = [n] in Adjazenzmatrixform gegeben.
Eingabe von P: π : [n]→ [n] mit G1 = π(G0).

1 P wählt Permutation π1 ∈R Sn und sendet V die Adjazenzmatrix von
π1(G1) =: H.

2 V wählt ein b ∈R {0, 1} zufällig und schickt es zu P.

3 P antwortet mit π1 falls b = 1 und sonst mit π1 ◦ π. Bezeichne Antwort als π̃.

4 V akzeptiert gdw. π1(G1) = π̃(Gb).

G0
π //

π1◦π ""FFFFFFFF G1

π1

��
π1(G1)
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Einführung Perfekte Geheimhaltung Einwegfunktionen Pseudozufall Zero-Knowledge Beweise Fazit

Einführung
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Zusammenfassung

1 One-Time-Pad theoretisch die beste Lösung, praktisch aber zu ineffizient.

2 Die Komplexitätstheorie ermöglicht die Bedürfnisse der Kryptographie sauber zu
formulieren.

3 Einwegfunktionen sind leicht zu berechnen, schwer zu invertieren. Existieren sie,
dann gilt P 6= NP. Aber aus P 6= NP folgt nicht notwendigerweise die
Existenz von Einwegfunktionen.

4 Einwegfunktionen existieren genau dann, wenn es Pseudozufällige Generatoren
gibt.

5 Die moderne Kryptographie hat auch ihre Problemfelder erweitert:
Zero-Knowledge Proofs, digitale Signaturen, sichere Auktion-/Wahlsysteme,
Datenschutz, . . .

6 Es gibt noch weitere Verbindungen zur Kryptographie: Quantenrechner können
effizient faktorisieren, pseudozufällige Funktionen und Verbindungen zum
maschinellen Lernen, Derandomisierung von BPP bei Existenz von
pseudozufälligen Funktionen.

7 AES, gruppentheoretische Chiffren, Stromchiffren Kandidaten für PZG.
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5 Die moderne Kryptographie hat auch ihre Problemfelder erweitert:
Zero-Knowledge Proofs, digitale Signaturen, sichere Auktion-/Wahlsysteme,
Datenschutz, . . .

6 Es gibt noch weitere Verbindungen zur Kryptographie: Quantenrechner können
effizient faktorisieren, pseudozufällige Funktionen und Verbindungen zum
maschinellen Lernen, Derandomisierung von BPP bei Existenz von
pseudozufälligen Funktionen.

7 AES, gruppentheoretische Chiffren, Stromchiffren Kandidaten für PZG.
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Zusammenfassung

1 One-Time-Pad theoretisch die beste Lösung, praktisch aber zu ineffizient.

2 Die Komplexitätstheorie ermöglicht die Bedürfnisse der Kryptographie sauber zu
formulieren.

3 Einwegfunktionen sind leicht zu berechnen, schwer zu invertieren. Existieren sie,
dann gilt P 6= NP. Aber aus P 6= NP folgt nicht notwendigerweise die
Existenz von Einwegfunktionen.

4 Einwegfunktionen existieren genau dann, wenn es Pseudozufällige Generatoren
gibt.

5 Die moderne Kryptographie hat auch ihre Problemfelder erweitert:
Zero-Knowledge Proofs, digitale Signaturen, sichere Auktion-/Wahlsysteme,
Datenschutz, . . .

6 Es gibt noch weitere Verbindungen zur Kryptographie: Quantenrechner können
effizient faktorisieren, pseudozufällige Funktionen und Verbindungen zum
maschinellen Lernen, Derandomisierung von BPP bei Existenz von
pseudozufälligen Funktionen.

7 AES, gruppentheoretische Chiffren, Stromchiffren Kandidaten für PZG.
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Vortragsende

Vielen Dank für die Aufmerksamkeit!

Fragen?
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