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Einfiihrung

Grundprobleme

Probleme der Kryptographie:

@ Datensicherheit Schutz vor unbefugtem Lesen von Daten.

@ Datenintegritat Schutz vor ungewollter Modifikation der
Daten.
© Authentifikation Nachweis einer ldentitat in dem man

© Etwas weill
@ oder etwas besitzt
@ oder etwas ist.



Einfiihrung

Definition (Kryptosystem)

Ein Paar (Enc, Dec) von polynomiellen Funktionen
Enc: K x M — C, (k, x) — Enck(x)
und
Dec: K x C — M, (k,y) — Deck(y)

mit den Mengen M, C, K (Klartext-,Chiffretext- und
Schliisselmenge) heiBt Kryptosystem, wenn zusatzlich die
Bedingung gilt

Decy o Ency = ldy (Vk € K)
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Definition

Definition

Ein Kryptosystem (Enc, Dec) iiber B” bietet perfekte
Geheimhaltung, falls fiir jede Verteilung auf M von Nachrichten,
jeder Nachricht x und jeden auftretenden Chiffretext y gilt

PriM=x|C=y]=Pr[M = x|

Anders formuliert:

Ency, (x) = Ency, (X) (x,x" € M)
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Definition

Lemma

Fiir ein Kryptosystem N = (Enc, Dec) sind die folgenden Aussagen
aquivalent

Q 11 bietet perfekte Geheimhaltung.
@ Fiir jede Verteilung auf M und allen x € M, y € C gilt:

PriC=y|M=x]=Pr[C=y].

© Flir jede Verteilung auf M und allen xg,x1 € M und c € C
gilt
PriC=y|M=x]=Pr[C=y|M=x]
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Definition

Proof.

1. & 2.: Einfache Umformung und Bayes.

1.,2. & 3.

'=": Folgt direkt aus 2..

'«<": Sei eine beliebige Verteilung auf M und xg € M und y € C
gewahlt. Definiere p := Pr[C =y | M = mp]. Dann gilt

PriC=y]= ) Pr[C=y|[M=x]-Pr[M=x]
xeEM
= ZpPr[M:x]
xEM
=p
=Pr[C=y| M= x]
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Satz von Shannon und Vernams One-Time-Pad

Ein Kryptosystem (Enc, Dec) mit Klartextmenge M und
Schliisselmenge K bietet perfekte Geheimhaltung, dann gilt

K| = |M]|
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Satz von Shannon und Vernams One-Time-Pad

Ein Kryptosystem (Enc, Dec) mit Klartextmenge M und
Schliisselmenge K bietet perfekte Geheimhaltung, dann gilt

K| = |M]|

Annahme: |K] < |M]|. Sei M gleichverteilt und y € C ein
Chiffretext, der auftritt. Definiere

M(c) := {x | x = Deck(y), k € K}

Es gilt IM(y)| < |K| da wir jedem Element in M(c) ein Schliissel
zuordnen konnen. Da |K| < | M| existiert ein x € M\M(y) fiir das
gilt

PriM=x|C=y]=0<Pr[M=x]

im Widerspruch zur perfekten Geheimhaltung. [




Perfekte Geheimhaltung
0®00

Satz von Shannon und Vernams One-Time-Pad

Theorem (von Shannon)

Sei (Enc, Dec) ein Kryptosystem mit |K| = |M| = |C|. Dann
bietet das Kryptosysteme perfekte Geheimhaltung genau dann
wenn folgende Bedingungen gelten:

1. Die Schliissel werden gleichverteilt gewahlt, d. h. K ~ Ux.

2. Fiir alle Nachrichten x € M und Chiffretexten y € C existiert
genau ein k € K mit y = Ency(x).
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Satz von Shannon und Vernams One-Time-Pad

Definition (One-Time-Pad)

Seien K = M =C = {0,1}" fiir ein n € N. Dann heisst
(Enc, Dec)

Enci(x) :== x ® k, Deck(y) ==y ® k

One-Time-Pad (Vernam Chiffre).
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Satz von Shannon und Vernams One-Time-Pad

Zusammenfassung

@ Satz von Shannon = One-Time-Pad perfekt geheim.

@ One-Time-Pad ist minimal (bzgl. £ und C) mit der
Eigenschaft der perfekten Geheimhaltung.

© Ungiinstige Losung: Schliissellange = Nachrichtenlange, wozu
dann den Schliisselaustausch?
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Satz von Shannon und Vernams One-Time-Pad

Zusammenfassung

@ Satz von Shannon = One-Time-Pad perfekt geheim.

@ One-Time-Pad ist minimal (bzgl. £ und C) mit der
Eigenschaft der perfekten Geheimhaltung.

© Ungiinstige Losung: Schliissellange = Nachrichtenlange, wozu
dann den Schliisselaustausch?

Ergebnis: Es werden lockere Definition von Sicherheit bendtigt.
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Berechnungssicherheit

Die moderne Kryptographie kommt

@ Die Forderungen an die Sicherheit eines Kryptosystems
werden gelockert um praktikablere Chiffren zu konstruieren.
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Berechnungssicherheit

Die moderne Kryptographie kommt

@ Die Forderungen an die Sicherheit eines Kryptosystems
werden gelockert um praktikablere Chiffren zu konstruieren.

@ Mit Hilfe der Komplexitatstheorie werden die Angreifer
modelliert: Polynomialzeitalgorithmen mit Zufallszahlen
PPT.

© Die Sicherheit der moderne Kryptographie basiert auf die
Schwierigkeit von gewissen Problemen (Reduktionsprinzip)
— Einwegfunktionen.

@ Zuerst aber ein Schockergebnis:



Einwegfunktionen
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Berechnungssicherheit

Theorem

Sei P = N'P und (Enc, Dec) in Polynomialzeit berechenbar mit
einer Schliissellinge von n = n(m) < m bei Nachrichtenlange m.
Dann existiert ein Polynomialzeitalgorithmus A, so dass fiir alle
Eingabelingen m gilt: es gibt es ein Paar xo,x1 € {0,1}™ mit

3
P A(E =b] > —
P [A(Enei(x)) = 6] > |

ker{0,1}
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Einwegfunktionen

Definition (Vernachlassigbare Funktionen)

Sei ¢ : N — [0,1] C R, dann heisst € vernachlassigbar, wenn
e(n) = n=“()_ D. h. fiir alle ¢ > 0 existiert ein N € N, sodass
e(n) < n~¢ fiir alle n > N gilt.
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Einwegfunktionen

Definition

Berechnungssicherheit bedeutet fiir ein Kryptosystem

(Enc, Dec) mit Schliissellange n und Eingabeldnge m, dass wir fiir
alle A € PPT eine vernachl3ssigbare Funktion e haben, so dass (x;
bezeichne das i-te Bit von der Nachricht x):

1
P E, d. xi=b] < =
P TAE() = (:8) 5. . = B < 5 +<(n)
XGR{Ovl}m

gilt. Das heisst uber kein Bit der Nachricht x kann ein Angreifer
mit nicht vernachlassigbarer Wahrscheinlichkeit Informationen in
Polynomialzeit errechnen.
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Einwegfunktionen

Definition (Einwegfunktionen)

Eine in Polynomialzeit berechenbare Funktion f : B* — B* heiBt
Einwegfunktion, falls fiir alle A € PPT gilt:

Pr [A(y) =x' mit f(x') = y]
xErB"
y=f(x)

ist vernachlassigbar in n € N.
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Einwegfunktionen

Definition (Einwegfunktionen)

Eine in Polynomialzeit berechenbare Funktion f : B* — B* heiBt
Einwegfunktion, falls fiir alle A € PPT gilt:
Pr [A(y) =X mit f(x') =y]

xErB"

y=f(x)
ist vernachlassigbar in n € N.
Gilt |f(x)| = |x| fur x € B*, so heisst f langenerhaltend. Ist
eine injektive , langenerhaltende Einwegfunktion, dann heisst f
Einwegpermutation.
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Einwegfunktionen

Definition (Einwegfunktionen)

Eine in Polynomialzeit berechenbare Funktion f : B* — B* heiBt
Einwegfunktion, falls fiir alle A € PPT gilt:
Pr [A(y) =X mit f(x') =y]

xErB"

y=f(x)
ist vernachlassigbar in n € N.
Gilt |f(x)| = |x| fur x € B*, so heisst f langenerhaltend. Ist
eine injektive , langenerhaltende Einwegfunktion, dann heisst f
Einwegpermutation.

Vermutung: Es existiert eine Einwegfunktion.
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Einwegfunktionen

Wenn P = NP dann existieren keine Einwegfunktionen.
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Einwegfunktionen

Einwegfunktion?

Eulersche p-Funktion:
. . 7, * *
w(n) = {1 <j<nlegTGom) =1} = |(“z) | =125

Fiir n =T]7_; p;" mit verschiedenen Primzahlen p; gilt:

w(n) = Hp Hpi—1)
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Einwegfunktionen

Einwegfunktion?

Eulersche p-Funktion:
. . 7, * *
w(n) = {1 <j<nlegTGom) =1} = |(“z) | =125

Fiir n =T]7_; p;" mit verschiedenen Primzahlen p; gilt:

w(n) = Hp Hpi—1)
RSA-Kryptosystem

Fiir ein n € N sei N = N(n) € N eine zusammengesetzte Zahl mit n-Bits und e € N
mit ggT(p(n),e) =1. 1.d. R. N=p-qund p # q prim.

Enc(Nye)(x) = RSA(N7E)(X) = [Xe]N (X S Z/NZ*)
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Einwegfunktionen

Einwegfunktion?

Eulersche p-Funktion:
. . 7, * *
w(n) = {1 <j<nlegTGom) =1} = |(“z) | =125

Fiir n =T]7_; p;" mit verschiedenen Primzahlen p; gilt:

w(n) = Hp Hpi—1)
RSA-Kryptosystem

Fiir ein n € N sei N = N(n) € N eine zusammengesetzte Zahl mit n-Bits und e € N
mit ggT(p(n),e) =1. 1.d. R. N=p-qund p # q prim.

Enc(Nye)(x) = RSA(N7E)(X) = [Xe]N (X S Z/NZ*)

Der Empfanger berechnet ein geheim gehaltenes d (Privater Schliissel) mit ed = 1
mod ¢(N).

Dec(y,e)(v) == v“In
Kennt man den Wert von ¢(NN), so lasst sich d effizient mit dem euklidischen
Algorithmus bestimmen.
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Einwegfunktionen

Und diese Funktion?

Quadratische Reste:

QR, ={z€Z: |y el :y*=7z}
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Einwegfunktionen

Und diese Funktion?

Quadratische Reste:

QR, ={z€Z: |y el :y*=7z}

Rabin-Kryptosystem

Sei N=PQ, P,Q > 2 prim und P, Q =3 mod 4. Verschliisseln
ist das Quadrieren mod N und dechiffrieren ist das
Quadratwurzel ziehen in Zy.
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Einwegfunktionen

Und diese Funktion?

Quadratische Reste:

QR, ={z€Z: |y el :y*=7z}

Rabin-Kryptosystem

Sei N = PQ, P,Q > 2 prim und P, @ =3 mod 4. Verschliisseln
ist das Quadrieren mod N und dechiffrieren ist das
Quadratwurzel ziehen in Zy.

Da der Empfanger die Faktorisierung von N kennt, kann er mit
Hilfe des chinesischen Restsatzes das Problem auf die simultane
Quadratwurzelbestimmung in Zp und Zg reduzieren, welches sich
effizient 16sen lasst (— Tafel).
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Einwegfunktionen

Definition (Levins universelle Einwegfunktion)

Es ist f;; Levins universelle Einwegfunktion wie folgt definiert:
Die Eingabe wird geeignet zerteilt: x = X1 - - - Xjog n (1 := |x]) mit
|xi| = g7 furi=1,...,logn. Sei (M;)jen eine Abzahlung aller
Turingmaschinen. Dann gilt

n? n?
fu(x) = M{ (x1)--- Mlogn(X|0gn)

wobei

Mt
olxl, sonst

Falls es eine Einwegfunktion gibt, dann ist f; eine Einwegfunktion.

(x) {M,-(X)7 M; terminiert nach < t Schritten.
X) =




Einwegfunktionen
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Einwegfunktionen

Wenn Einwegfunktionen existieren, dann gibt es ein ¢ € N, sodass
es ein berechnungssicheres Kryptosystem (Enc, Dec) gibt, welches
eine Schlissellinge von n und Nachrichtenlange von n¢ hat.
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Einwegfunktionen

Zusammenfassung

@ Einwegfunktionen sind leicht zu berechnen, schwer
invertierbare Funktionen.
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Einwegfunktionen

Zusammenfassung

@ Einwegfunktionen sind leicht zu berechnen, schwer
invertierbare Funktionen.

@ Existieren diese, so haben wir effizientere und sichere
Kryptosysteme.
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Einwegfunktionen

Zusammenfassung

@ Einwegfunktionen sind leicht zu berechnen, schwer
invertierbare Funktionen.

@ Existieren diese, so haben wir effizientere und sichere
Kryptosysteme.

© Sicherheit nun Komplexitatstheoretisch definiert und
Resterfolgswahrscheinlichkeit eingeraumt (aber im
vernachl3ssigbaren € Bereich)
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Einwegfunktionen

Zusammenfassung

@ Einwegfunktionen sind leicht zu berechnen, schwer
invertierbare Funktionen.

@ Existieren diese, so haben wir effizientere und sichere
Kryptosysteme.

© Sicherheit nun Komplexitatstheoretisch definiert und
Resterfolgswahrscheinlichkeit eingeraumt (aber im
vernachl3ssigbaren € Bereich)

@ Kilassische Kryptographie und die Mathematik liefern
Kandidaten fiir Einwegfunktionen.
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Was ist Zufall?

O Kolmogorow-Komplexitdt: x € B" ist zufallig, wenn es
keine Turingmaschine mit Beschreibungslange < 0.99n gibt,
welche bei leerer Eingabe x ausgibt.
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Pseudozufall

Was ist Zufall?

O Kolmogorow-Komplexitdt: x € B" ist zufallig, wenn es
keine Turingmaschine mit Beschreibungslange < 0.99n gibt,
welche bei leerer Eingabe x ausgibt.

Ungeeignet da Unentscheidbar!

@ Ansatz der Statistiker: Erfiillen Zeichenkette die Gesetze der
Statistik? Gesetz der groBen Zahl z. B.

Es gibt kryptographisch unsichere Verteilungen, welche dieses
erfiillen.
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Pseudozufallsgeneratoren

Die Antwort der Kryptographen

Definition (Pseudozufallsgenerator (PZG))

Seien G : B* — B*,/ : N — N in Polynomialzeit berechenbar und
gelte £(n) > n fir alle n € N. (G, ¥) heisst
Pseudozufallsgenerator (kurz: PZG) mit Dehnung ¢, wenn gilt
|G(x)| = £(|x|) fir alle x € B* und fiir alle A € PPT existiert ein
vernachlassigbares €, sodass

Pr[A(G(Un)) = 1] — Pr [A(Uy)) = 1}) < ¢(n) (neN)

gilt.
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Pseudozufallsgeneratoren

Theorem (Einwegfunktionen = PZG)

Existiert eine Einwegfunktion, dann existieren fiir alle Polynome /
mit £(n) > n fiir n € N ein PZG (G, /).




Pseudozufall
oeo
Pseudozufallsgeneratoren

Theorem (Einwegfunktionen = PZG)

Existiert eine Einwegfunktion, dann existieren fiir alle Polynome /
mit £(n) > n fiir n € N ein PZG (G, /).

Im folgendem wird dieser Satz fiir Einwegpermutationen gezeigt.
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Pseudozufallsgeneratoren

Definition (Unvorhersehbarkeit)

Sei G : B* — B* mit Dehnung ¢. G und ¢ sind in Polynomialzeit
berechenbar. G heiBt unvorhersehbar, wenn fiir alle B € PPT
gilt:

P By yic) = vil S 12+ €(n)

y=G(x)

ier[e(n)]

mit vernachlassigbaren € und n € N.
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Konstruktion aus Einwegpermutation

Lemma (Yao)

Sei (G,¥) ein PZG, dann existieren fiir alle A € PPT ein
B € PPT, so dass fiir alle n € N und € > 0 aus
Pr [A(G(Un))] — Pr [A(Ug(n))] > €, folgt

Pr [B(l”,yl,...,y,-,l):y,-] > 1/2—}-6/5(”).
x€r{0,1}"
y=G(x)
i€r[¢(n)]
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Konstruktion aus Einwegpermutation

Theorem (G PZG < unvorhersehbar)

Seien G : B* — B* und ¢ : N — N in Polynomialzeit berechenbar
und G habe die Dehnung {. Dann ist (G, /) ein PZG genau dann
wenn G unvorhersehbar ist.

v
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Konstruktion aus Einwegpermutation

Theorem (G PZG < unvorhersehbar)

Seien G : B* — B* und ¢ : N — N in Polynomialzeit berechenbar
und G habe die Dehnung {. Dann ist (G, /) ein PZG genau dann
wenn G unvorhersehbar ist.

Proof.

| N

"=": Angenommen (G, ¢) ist PZG und n € N. Wenn y = (y1,...,Y¢(n)) €R B4
zufillig gleichverteilt gewahlt wurde, kann kein Bit vorhergesagt werden. Ist G
vorhersehbar, dann kann y = G(x) von y €z BY" unterschieden werden. Damit ist G
kein PZG.
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Konstruktion aus Einwegpermutation

Theorem (G PZG < unvorhersehbar)

Seien G : B* — B* und ¢ : N — N in Polynomialzeit berechenbar
und G habe die Dehnung {. Dann ist (G, /) ein PZG genau dann
wenn G unvorhersehbar ist.

Proof.

| N

"=": Angenommen (G, ¢) ist PZG und n € N. Wenn y = (y1,...,Y¢(n)) €R B4
zufillig gleichverteilt gewahlt wurde, kann kein Bit vorhergesagt werden. Ist G
vorhersehbar, dann kann y = G(x) von y €z BY" unterschieden werden. Damit ist G
kein PZG.

"<": Angenommen (G, ¥) ist kein PZG. Dann existiert ein A € PPT mit

Pr[A(G(U,))] — Pr [A(U[(,,))] >n €

fiir eine Konstante ¢ und co-vielen n. Die Betragsstriche in der Definition vom
Pseudozufallsgenerator lassen sich ggf. durch Ubergang von A zu 1 — A entfernen.
Mit dem Lemma von Yao gibt es fiir solche n ein B € PPT welches mit
Wahrscheinlichkeit > 1/2 + n=</¢(n) ein Bit vorhersagen kann. Da n=¢/¢(n) nicht
vernachlassigbar ist fiir groBe n folgt, dass G vorhersehbar ist. O
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Konstruktion aus Einwegpermutation

Theorem (Goldreich-Levin Theorem)

Sei f : B* — B* eine Einwegpermutation. Dann gibt es fiir alle
A € PPT ein vernachlissigbares ¢ mit

Pr |A(f(x),r)=x"-r= ir = <1/2
xeR%" (f(x),r)=x"-r ;xr xOr| <1/2+¢(n)
rerB" =

fir alle n € N.
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Konstruktion aus Einwegpermutation

Existiert eine Einwegpermutation, dann existiert ein PZG G mit
Dehnung n + 1.
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Konstruktion aus Einwegpermutation

Existiert eine Einwegpermutation, dann existiert ein PZG G mit
Dehnung n + 1.

| A

Proof.
G(x,r) := f(x), r,x"r ist ein Pseudozufallsgenerator mit Dehnung
2n+ 1. Denn G ist unvorhersehbar: die ersten 2n Bits von G(Uz,)
sind zufallig unabhangig voneinander und das 2n + 1 Bit kann
wegen des Goldreich-Levin-Theorems nicht zuverlassig
vorhergesagt werden.

]

\
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Konstruktion aus Einwegpermutation

Theorem (PZGs mit polynomieller Dehnung)

Sei f eine Einwegpermutation, ¢ € N und x,r € B", setze:
G(x,r):=r, f(x)"-r, f2(x)t “r..., f’(x)t -r

mit | = n®. Dann ist G ein PZG mit Dehnung I(2n) = n+ n°.
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Einfiihrung

Definition (Zero-Knowledge Beweise)

Sei L € NP und M eine Turingmaschine, die in Polynomialzeit
[Auft, mit

x e L Jue{0,1}PX) . M(x, h) = 1. (p Polynom)

M entscheidet also L mit Hilfe eines Zeugen u. Ein Paar (P, V)
von interaktiven Polynomialzeitalgorithmen heiBt Zero-Knowledge
Beweis fiir L, falls die folgenden Eigenschaften erfiillt sind:
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Einfiihrung

ZK-Beweise Eigenschaften

@ Vollistindigkeit: Fiir jedes x € L und Zertifikat u = u(x) gilt

Pr [outy (P(x, u), V(x))] >

WIN

Wobei (P(x, u), V(x)) die Interaktion zwischen P und V mit den gegebenen
Eingaben bezeichnet und outy, I beschreibt die Ausgabe von V am Ende der
Interaktion /.
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ZK-Beweise Eigenschaften

@ Vollistindigkeit: Fiir jedes x € L und Zertifikat u = u(x) gilt

Pr [outy (P(x, u), V(x))] >

WIN

Wobei (P(x, u), V(x)) die Interaktion zwischen P und V mit den gegebenen
Eingaben bezeichnet und outy, I beschreibt die Ausgabe von V am Ende der
Interaktion /.

@ Zuverlissigkeit: Wenn x ¢ L, dann gilt fiir jede Strategie P* und Eingabe wu,
dass

Pr fouty (P* (x, u), V(x))] < %

dabei ist P* in keiner Weise beschrankt.
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Einfiihrung

ZK-Beweise Eigenschaften

@ Vollistindigkeit: Fiir jedes x € L und Zertifikat u = u(x) gilt

Pr [outy (P(x, u), V(x))] >

WIN

Wobei (P(x, u), V(x)) die Interaktion zwischen P und V mit den gegebenen
Eingaben bezeichnet und outy, I beschreibt die Ausgabe von V am Ende der
Interaktion /.

@ Zuverlissigkeit: Wenn x ¢ L, dann gilt fiir jede Strategie P* und Eingabe wu,
dass

Pr fouty (P* (x, u), V(x))] < %

dabei ist P* in keiner Weise beschrankt.

@ Perfect-Zero-Knowledge-Eigenschaft: Fiir alle Verifizierstrategien V* € PPT
existiert ein S* mit erwarteter probabilistischer Polynomiallaufzeit, so dass fiir
alle x € L und u Zeuge dafiir gilt:

outy = (P(x,u), V*(x)) = S*(x)

Die Gleichheit bezieht sich auf die Gleichheit der Verteilungen. S* simuliert V*.
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@ Es gibt noch weitere Verbindungen zur Kryptographie: Quantenrechner kdnnen
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@ AES, gruppentheoretische Chiffren, Stromchiffren Kandidaten fiir PZG.



Vortragsende

Vielen Dank fur die Aufmerksamkeit!

Fragen?
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