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Das Regularitätslemma

Grundbegriffe und Formulierung
Das Regularitätslemma gestattet es uns die Eckenmenge eines hinreichend großen
Graphen so zu partionieren, dass die zwischen diesen Eckenmengen verlaufenden
Kanten nahezu gleichmäßíg verteilt sind, also wie wir es erwarten würden.

Zuerst einige Grundbegriffe und -tatsachen. Im folgendem sei G = (V,E) ein
einfacher Graph und A,B disjunkte Teilmengen von V .

Definition 1 (Dichte eines Paares). Es ist

d(A,B) :=
‖A,B‖
|A||B|

∈ [0, 1]

die Dichte des Eckenpaares (A,B). Wobei wir mit ‖A,B‖ die Anzahl der A-B-
Kanten in G bezeichnen.

Die Dichte gibt also an, wieviele der möglichen Kanten zwischen A und B tat-
sächlich existieren.

Definition 2 (ε-reguläre Eckenpaare und ε-reguläre Partitionen). Wir
nennen für ein ε > 0 (A,B) ε-regulär, wenn für alle A′ ⊆ A, B′ ⊆ B mit
(|A′|, |B′|) ≥ ε(|A|, |B|) gilt:

|d(A,B)− d(A′, B′)| ≤ ε

Eine Partition {V0, V1, . . . , Vk} von V mit Ausnahmemenge V0 heißt ε-reguläre
Partition, wenn gilt

i) |V0| ≤ ε|V |.

ii) |Vi| = |Vj | für i, j ∈ [k].

iii) Maximal εk2 Paare (Vi, Vj)1≤i<j≤k sind nicht ε-regulär. 1

Je näher das ε bei 0 ist, desto gleichmäßiger (regulärer) sind die Kanten zwischen
(A,B) verteilt. Wir lassen den Parameter ε im folgendem fort. Die Ausnahme-
menge V0 agiert als Abfalleimer, der nicht zu groß werden darf. Man kann jedoch
auch fordern, dass ||Vi|− |Vj || ≤ 1 gilt. Die letzte Eigenschaft sichert, dass nicht
zuviele Paare irregulär sind.

Zuerst werden einige Eigenschaften von ε-regulären Eckenpaaren gezeigt.

Satz 1. Sei für ein ε > 0 (A,B) ε-regulär und d := d(A,B). Dann gilt für alle
B′ ⊆ B mit |B′| ≥ ε|B|, dass die Menge

A′ := {v ∈ A | |N(v) ∩B′| < (d− ε)|B′|}

weniger als ε|A| Elemente enthält. Das heisst mehr als ε|A| viele Elemente aus
A haben mehr als (d− ε)|B′| viele Nachbarn in B′.

1Man könnte auch anschaulicher ε
(k
2

)
fordern.
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Beweis Annahme: |A′| ≥ ε|A|, dann gilt |d − d(A′, B′)| < ε, also d(A′, B′) ≥
d− ε⇔ ‖A′, B′‖ ≥ (d− ε)|A′||B′|, womit die Existenz eines v ∈ A′ mit |N(v)∩
B′| ≥ (d− ε)|B′| folgt.  

Es gibt also bei hinreichend großen Teilmengen einer Menge eines regulären
Eckenpaares verschwindend wenige Nachbarn, deren Grad von der Erwartung
abweicht. Eine weitere Eigenschaft der Regularität ist es, dass sie unter Teil-
mengenbildung invariant bleibt:

Satz 2 (Slicing Lemma). Sei (A,B) ein ε-reguläres Paar, d := d(A,B). Für
α > ε, seien A′ ⊆ A, B′ ⊆ B mit |A′| ≥ α|A| und |B′| ≥ α|B|. Dann ist (A′, B′)
ein ε′-reguläres Paar mit e′ := max{ε/α, 2ε}.

Beweis Seien A′′ ⊆ A′, B′′ ⊆ B′ mit |A′′| ≥ ε′|A′| ≥ ε
αα|A| = ε|A| und

|B′′| ≥ ε′|B′|. Es folgt mit der Dreiecksungleichung

|d(A′′, B′′)−d(A′, B′)| ≤ |d(A′′, B′′)−d(A,B)|+ |d(A,B)−d(A′, B′)| = 2ε ≤ ε′

Womit (A′, B′) ε′-regulär ist.

Nun kann das Hauptresultat dieser Arbeit wohlformuliert werden:

Lemma 1 (Regularitätslemma - Szemerédi 1976). Für alle ε > 0 und
m ≥ 1 existiert ein M und ein N ∈ N, sodass sich alle Eckenmengen der Gra-
phen mit n ≥ N Ecken in die ε-reguläre Partition {V0, . . . , Vk} partitionieren
lassen. Dabei ist k aus [m,M ].

Die Parameter ε und eine Mindestanzahl an Partitionsmengenm, welches höhere
Dichten zwischen den Paaren und weniger Kanten innerhalb der Eckenmengen
Vi zur Folge hat, können frei gewählt werden. Das Regularitätslemma liefert
dann eine ε-reguläre Partition mit einer beschränkten Anzahl an Partitions-
mengen für alle hinreichend großen Graphen. Für den Beweis bedarf es einiger
Vorarbeit, die im folgendem Abschnitt geleistet wird.

Konzeptionell definiert man eine durch eine Konstante beschränkte(!) Funk-
tion von Partitionen von V . Man zeigt daraufhin, dass bei Verfeinerungen von
Partition der Wert unter dieser Funktion nicht kleiner wird. Ausgestattet mit
diesen Wissen ermittelt man eine Abschätzung für eine Verfeinerung von irregu-
lären Eckenpaaren. Dieses Ergebnis erweitert man dann auf eine Abschätzung
wie eine Verfeinerung einer irregulären Partionierung mit Ausnahmemenge den
Wert unter Funktion mindestens um eine Konstante hebt. Da die Funktion mit
einer Konstante beschränkt ist, muss eine Endlosschleife irgendwann terminieren
und das ist dann, wenn die Partitionierung regulär wird (weil das die Voraus-
setzung für das Verfahren ist). Technische Probleme dabei sind das Wachstum
der Ausnahmemenge und die Anzahl der Partitionsmengen (das Lemma liefert
ja eine obere Schranke für die Anzahl dieser).
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Beweis des Regularitätslemmas
Die folgende Ungleichung wird in diesem Abschnitt benötigt:

Satz 3. Für reelle µ1, . . . , µk > 0, e1, . . . , ek ≥ 0 gilt

(
∑
ei)

2∑
µi
≤
∑ e2

i

µi
(1)

Beweis Dies folgt aus der Cauchy-Schwarzschen Ungleichung(∑
aibi

)2

≤
∑

a2
i

∑
b2i

mit ai =
√
µi und bi = ei√

µi
.

Es ist nun G = (V,E) ein einfacher Graph.
Für disjunkte A,B ⊂ V definieren wir

q(A,B) :=
|A||B|
n2

d2(A,B) =
‖A,B‖2

n2|A||B|

Für Partitionen A von A und B von B erweitern wir:

q(A,B) :=
∑

A∈A, B∈B
q(A,B)

sowie für V =
⋃̇
Vi

q({V1, . . . , Vk}) :=
∑
i<j

q(Vi, Vj)

betrachten wir reguläre Partitionen von V , so wird die Ausnahmemenge in ihre
1-elementigen Teilmengen partioniert. Wir können q als Maß für Regularität ei-
ner Partition deuten. Eine weitere wichtige Beobachtung ist, dass für Partitionen
V1, . . . , Vk von V gilt:

q({V1, . . . , Vk}) =
∑
i<j

q(Vi, Vj)

=
∑
i<j

|Vi||Vj |
n2

d2(Vi, Vj)︸ ︷︷ ︸
≤1

≤ 1

Unser Vorgehen ist nun wie folgt: Wir werden eine irreguläre Partition schritt-
weise verfeinern, sodass der Wert unter q mindestens um einen Wert in Abhän-
gigkeit nur von ε steigt. Da er nach oben beschränkt ist durch eine Konstante,
werden wir sie nach einer beschränkten Anzahl an Verfeinerungen ε-regulär ma-
chen.

Als erstes zeigen wir, dass eine die Verfeinerung einer Partition deren Wert
unter q nicht senkt.
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Satz 4. Seien A,B ⊆ V disjunkt, A und B Partitionen von A bzw. B, so gilt

q(A,B) ≤ q(A,B) (2)

und für eine Partitionen P von V und einer Verfeinerung P ′ dieser gilt

q(P) ≤ q(P ′) (3)

Beweis (2): A = {A1, A2}, B = {B1, B2}, A = ∪̇Ai, B = ∪̇Bi.

q(A,B) =
∑
i,j

q(Ai, Bj)

=
1

n2

∑
i,j

‖Ai, Bj‖2

|Ai||Bj |

(1)

≥ 1

n2

=‖A,B‖2︷ ︸︸ ︷∑
i,j

‖Ai, Bj‖

2

∑
i,j

|Ai||Bj |︸ ︷︷ ︸
=(ΣAi)(ΣBj)

= q(A,B)

(3): O.B.d.A. P = {X,V1, . . . , Vk} und P ′ = P−X+{X1, X2} mit X = X1∪̇X2.

q(X,Vi)
(2)

≤ q({X1, X2}, Vi)
= q(X1, Vi) + q(X2, Vi)

nun folgt

q(P ′) = q(X1, X2)︸ ︷︷ ︸
≥0

+
∑
i<j

q(Vi, Vj) +
∑
i

q(X1, Vi) +
∑
i

q(X2, Vi)︸ ︷︷ ︸
≥
∑

i q(Xi,Vi)

≥
∑
i<j

q(Vi, Vj) +
∑
i

q(X,Vi)

= q(P)

Satz 5. Sei ε > 0, A,B ⊆ V disjunkt. Ist (A,B) ε-irregulär, so existieren
A1, A2, B1, B2 mit A = A1∪̇A2, B = B1∪̇B2 mit

q(A,B) + ε4
|A||B|
n2

≤ q({A1, A2}, {B1, B2})
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Beweis Seien (A,B) ein ε-irreguläres Paar, also gibt es |A1| ≥ ε|A|, |B1| ≥ ε|B|
mit

| d(A,B)− d(A1, B1)︸ ︷︷ ︸
=:η

| > ε

Setze a := |A|, ai := |Ai|, b := |B|, bi = |Bi|, eij := ‖Ai, Bj‖, e := ‖A,B‖. Mit
(1) erhalten wir:

q({A1, A2}, {B1, B2}) =
1

n2

∑
i,j

e2
ij

aibj

=
1

n2

 e2
11

a1b1
+
∑
i+j≥2

e2
ij

aibj


(1)

≥ 1

n2

 e2
11

a1b1
+

(∑
i+j≥2 eij

)2

∑
i+j≥2 aibj


=

1

n2

(
e2

11

a1b1
+

(e− e11)2

ab− a1b1

)
Es gilt ferner

e11 =
a1b1e

ab
+ ηa1b1

was mit der Definition von η leicht nachprüfbar ist. Also:

n2q({A1, A2}, {B1, B2}) ≥
1

a1b1

(
a1b1e

ab
+ ηa1b1

)2

+
1

ab− a1b1

((
1− a1b1

ab

)
e− ηa1b1

)2

≥ a1b1e
2

a2b2 + η2a1b1
2

≥ e2

ab
+ ε4ab = n2q(A,B) + ε4ab

Wobei |η| > ε, a1 ≥ εa, b1 ≥ εb benutzt wurde.

Satz 6. Seien 0 < ε ≤ 1/4, P = {V0, . . . , Vk} Partition von V , |V0| ≤ εn
Ausnahmemenge und |Vi| = |Vj | = r für (i 6= j). Ist P ε-irregulär, dann existiert
eine Partitition P ′ = {V ′0 , . . . , V ′l } von V mit Ausnahmemenge V ′0 , l ∈ [k, k4k],
|V ′0 | ≤ |V0|+ n2−k, |V ′i | = |V ′j | und

q(P) + ε5/2 ≤ q(P ′)

Beweis Sei P = {V0, . . . , Vk} eine irreguläre Partition von V .
Für 1 ≤ i < j ≤ k definieren wir Partitionen Pij von Vi und Pji von Vj wie
folgt:

2Ausmultiplizieren, der lineare Teil beider Terme kürzt sich heraus, dann werden die qua-
dratischen (und daher nichtnegativen) Teile des zweiten Terms nach unten abgeschätzt.
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Ist (Vi, Vj) ε-regulär dann Pij := {Vi} und Pji := {Vj}.
Ansonsten können wir (Vi, Vj) nach dem vorherigen Satz in 2-er Mengen Pij
und Pji zerlegen, sodass gilt:

q(Vi, Vj) + ε4
|Vi||Vj |
n2

≤ q(Pij ,Pji)

Für i ∈ [k] sei Pi die kleinste Partition von Vi, welche alle Vij verfeinert (i 6= j),
es gilt dann |Pi| ≤ 2k−1. Setze

P̃ = {V0} ∪
k⋃
i=1

Pi

Dann ist |P̃| ∈ [k, k2k]. Sei P0 := {{v} | v ∈ V0}.
Es sind mehr als εk2 der (Vi, Vj) und damit Vij irregulär, daher gilt:

q(P̃) =
∑

1≤i<j≤k

q(Pi,Pj)

≥
∑

1≤i<j≤k

q(Pij ,Pji)

≥
∑

1≤i<j≤k

q(Vi, Vj)

= q(P) + ε5
(
kr

n

)2

≥ q(P) +
ε5

2

Anwendungen des Regularitätslemmas
Ursprünglich stieß Szemerédi beim Beweis dieses Satzes auf das Regularitäts-
lemma:

Satz 7 (Szemerédi 1975). Für alle natürlichen k ≥ 3 und ε > 0 existiert
ein n0 ∈ N, sodass für alle natürlichen n ≥ n0 gilt: Wenn A ⊆ {1, . . . , n} mit
|A| > εn, dann enthält A eine arithmetische Progression der Länge k.

Ein wichtiges Lemma, welches aus dem Regularitätslemma folgt, ist das Ein-
bettungslemma. Der folgende Begriff wird für die Formulierung dieses Lemmas
benötigt:

Definition 3 (Regularitätsgraph). Zu gegebenem ε > 0, d ∈ [0, 1],m ∈ N
und V1, . . . , Vk Partition einer Eckenmenge V mit |Vi| = m konstruieren wir den
Graphen R mit Eckenmenge V1, . . . , Vk und Kanten zwischen Vi und Vj genau
dann wenn (Vi, Vj) ein ε-reguläres Paar mit Dichte ≥ d ist. R heißt Regularitäts-
graph 3. Für ein s ∈ N entsteht Rs aus R in dem die Ecken durch s Ecken ersetzt
werden und vormals verbundene Ecken nach dieser Transformation vollständige
bipartite Graphen Ks,s werden.

3Auch Cluster Graph und Reduced Graph genannt.
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Lemma 2 (Einbettungslemma). ∀d ∈ (0, 1] und ∆ ≥ 1 existiert ein ε0 > 0,
sodass für einfache Graphen G und H mit ∆(H) ≤ ∆ gilt: Für den Regularitäts-
graphen R von G mit den Parametern ε ≤ ε0, m und d, sowie s ∈ N : m ≥ 2s

d∆ ,
dann folgt aus H ⊆ Rs dass H Teilgraph von G ist.

Beweis Sei d ∈ (0, 1] und ∆ ≥ 1 gegeben. Da gilt

(d− ε)∆ −∆ε
ε→0−→ d∆

können wir wegen des Zwischenwertsatzes und der Stetigkeit des Ausdruckes in
ε ε0 ∈ (0, d) mit

(d− ε0)∆ −∆ε0 ≥
1

2
d∆

wählen. Jetzt halten wir s ∈ N, m ≥ 2s
d∆ , G, H und R von G mit den obigen

Eigenschaften fest. Sei V (Rs) = {V s1 , . . . , V sk } und H ⊆ Rs. Nummerieren wir
die h Ecken u1, . . . , uh von H so erhalten wir eine Zuordnung σ : [h]→ [k] mit
ui ∈ V sσ(i) für i = 1, . . . , h. Nun wollen wir H in G einbetten, dafür wählen wir
für jedes ui ein vi ∈ Vσ(i), sodass aus uiuj ∈ E(H) folgt, dass vivj ∈ E(G).
Ziel: Für i ∈ [h]:

Vσ(i) =: V 0
i ⊇ V 1

i ⊇ . . . ⊇ V ii = {vi}

Sodass ui 7→ vi H in G einbettet.
Algorithmus:
Dabei wird vi ∈ V i−1

i so gewählt, dass für die maximal ∆ vielen j > i mit

Algorithm 1 Iterative Einbettung
1: V 0

i := Vσ(i) ∀i ∈ [h]
2: for all i = 1 . . . h do
3: Wähle vi ∈ V i−1

i

4: for all j = i+ 1 . . . h do
5: if uiuj ∈ E(H) then
6: V ij := V i−1

j

7: else
8: V ij := V i−1

j ∩N(vi)
9: end if

10: end for
11: end for

uiuj ∈ E(H) gilt
|V ij | ≥ (d− ε)|V i−1

j |

Das geht nach Satz (1) mit den Mengen Vσ(i) und V i−1
j ⊆ Vσ(j). Damit fallen

maximal ∆εm Wahlen von vi weg. Folgendes muss noch gezeigt werden:

1. Es müssen in jedem V i−1
i noch s mögliche vi übrig bleiben (maximal s−1

Ecken aus Vσ(i) können schon eingebettet worden sein). Das ist äquivalent
zu

|V i−1
i | −∆εm ≥ s



Das Regularitätslemma 9

2. |V j−1
i | ≥ εm damit wir den Satz (1) anwenden können (j > i und uiuj ∈

E(H))

Erinnern wir uns an ε ≤ ε0, m ≥ 2s/d∆, ∆(H) ≤ ∆ und der Wahl von ε0 so
gilt:

|V j−1
i | −∆εm ≥ (d− ε)∆m−∆εm

≥ (d− ε0)∆m−∆ε0m

≥ 1

2
d∆m

≥ s

so folgen beide Behauptungen.
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