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Das Regularitatslemma

Grundbegriffe und Formulierung

Das Regularitdtslemma gestattet es uns die Eckenmenge eines hinreichend grofien
Graphen so zu partionieren, dass die zwischen diesen Eckenmengen verlaufenden
Kanten nahezu gleichméfig verteilt sind, also wie wir es erwarten wiirden.

Zuerst einige Grundbegriffe und -tatsachen. Im folgendem sei G = (V, E) ein
einfacher Graph und A, B disjunkte Teilmengen von V.

Definition 1 (Dichte eines Paares). Es ist
4B
Al B

die Dichte des Eckenpaares (A4, B). Wobei wir mit || A4, B]| die Anzahl der A-B-
Kanten in G bezeichnen.

d(A,B) : € [0,1]

Die Dichte gibt also an, wieviele der moglichen Kanten zwischen A und B tat-
sachlich existieren.

Definition 2 (e-regulidre Eckenpaare und e-regulire Partitionen). Wir
nennen fiir ein € > 0 (A, B) ereguldr, wenn fiir alle A” C A, B’ C B mit
(A", |B]) = e(|Al, |B]) gilt:

d(A, B) — d(A',B')| < ¢

Eine Partition {Vp, V1,...,Vi} von V mit Ausnahmemenge V; heift e-regulére
Partition, wenn gilt

i) Vol < €V].
i) Vil = |Vj] fiir 4, 5 € [K].

iii) Maximal ek? Paare (V;, Vi)1<i<j<k sind nicht e-regulér. !

Je ndher das € bei 0 ist, desto gleichméfiger (regulérer) sind die Kanten zwischen
(A, B) verteilt. Wir lassen den Parameter € im folgendem fort. Die Ausnahme-
menge V agiert als Abfalleimer, der nicht zu groft werden darf. Man kann jedoch
auch fordern, dass ||V;| —|V;|| < 1 gilt. Die letzte Eigenschaft sichert, dass nicht
zuviele Paare irregular sind.

Zuerst werden einige Eigenschaften von e-reguléren Eckenpaaren gezeigt.

Satz 1. Sei fiir ein € > 0 (4, B) e-reguldr und d := d(A, B). Dann gilt fiir alle
B’ C B mit |B'| > ¢|B|, dass die Menge
A':={ve A|INw)NB'| < (d—¢)|B'|}

weniger als €| A| Elemente enthélt. Das heisst mehr als €| A| viele Elemente aus
A haben mehr als (d — €)|B’| viele Nachbarn in B’.

1Man kénnte auch anschaulicher e(g) fordern.
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BEWEIS Annahme: |A'| > €|A|, dann gilt |d — d(A’, B)| < ¢, also d(A’, B") >
d—es |A,B|| > (d—¢€)|A'||B’|, womit die Existenz eines v € A’ mit |N(v) N
B'| > (d — €)|B’| folgt. 4 L]

Es gibt also bei hinreichend grofen Teilmengen einer Menge eines reguldren
Eckenpaares verschwindend wenige Nachbarn, deren Grad von der Erwartung
abweicht. Eine weitere Eigenschaft der Regularitit ist es, dass sie unter Teil-
mengenbildung invariant bleibt:

Satz 2 (Slicing Lemma). Sei (4, B) ein e-reguléres Paar, d := d(A, B). Fiir
a>e¢ seien A’ C A, B’ C B mit |A’'| > a|A| und |B’| > «|B|. Dann ist (A", B)
ein €'-regulires Paar mit ¢’ := max{e/«, 2¢}.

BEWEIS Seien A” C A',B” C B’ mit |[A"] > |A'| > falA| = €|A] und
|B”| > €|B’'|. Es folgt mit der Dreiecksungleichung

d(A", B") — d(A', B')| < |d(A", B") — d(A, B)| + |d(A, B)— d(A", B')| = 2 < ¢
Womit (A’, B") €'-regulér ist. ]

Nun kann das Hauptresultat dieser Arbeit wohlformuliert werden:

Lemma 1 (Regularititslemma - Szemerédi 1976). Fiir alle ¢ > 0 und
m > 1 existiert ein M und ein N € N, sodass sich alle Eckenmengen der Gra-
phen mit n > N Ecken in die e-reguldre Partition {Vp,..., V) } partitionieren
lassen. Dabei ist k aus [m, M].

Die Parameter € und eine Mindestanzahl an Partitionsmengen m, welches hohere
Dichten zwischen den Paaren und weniger Kanten innerhalb der Eckenmengen
V; zur Folge hat, kénnen frei gewdhlt werden. Das Regularitdtslemma liefert
dann eine e-reguldre Partition mit einer beschrinkten Anzahl an Partitions-
mengen fiir alle hinreichend groffen Graphen. Fiir den Beweis bedarf es einiger
Vorarbeit, die im folgendem Abschnitt geleistet wird.

Konzeptionell definiert man eine durch eine Konstante beschrankte(!) Funk-
tion von Partitionen von V. Man zeigt daraufhin, dass bei Verfeinerungen von
Partition der Wert unter dieser Funktion nicht kleiner wird. Ausgestattet mit
diesen Wissen ermittelt man eine Abschéitzung fiir eine Verfeinerung von irregu-
lairen Eckenpaaren. Dieses Ergebnis erweitert man dann auf eine Abschétzung
wie eine Verfeinerung einer irreguléren Partionierung mit Ausnahmemenge den
Wert, unter Funktion mindestens um eine Konstante hebt. Da die Funktion mit
einer Konstante beschrénkt ist, muss eine Endlosschleife irgendwann terminieren
und das ist dann, wenn die Partitionierung regulér wird (weil das die Voraus-
setzung fiir das Verfahren ist). Technische Probleme dabei sind das Wachstum
der Ausnahmemenge und die Anzahl der Partitionsmengen (das Lemma liefert
ja eine obere Schranke fiir die Anzahl dieser).
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Beweis des Regularitiatslemmas

Die folgende Ungleichung wird in diesem Abschnitt benotigt:

Satz 3. Fiir reelle pq, ..., 0 >0, e1,...,e, > 0 gilt

(e’ _ e
D i SZE M)

BEWEIS Dies folgt aus der Cauchy-Schwarzschen Ungleichung

(Sab) <Y a2y e

mit a; = /p; und b; = \Z‘T [ ]

Es ist nun G = (V, E) ein einfacher Graph.
Fiir disjunkte A, B C V definieren wir

_lAlB,
n2

_ 14,BJ?

A, B): S R 1

d*(A, B)

Fiur Partitionen A von A und B von B erweitern wir:

q(A,B) := Z q(A, B)

A€A, BEB

sowie fiir V = UVZ»
q({V1, ) Vk}) = ZCI(Viy Vj)
1<j
betrachten wir regulére Partitionen von V', so wird die Ausnahmemenge in ihre
1-elementigen Teilmengen partioniert. Wir kénnen ¢ als Maf fiir Regularitét ei-

ner Partition deuten. Eine weitere wichtige Beobachtung ist, dass fiir Partitionen
Vi,..., Vi von V gilt:

Q({Vl" : ;Vk}) = ZQ(V;?‘/J)
5 WY e

— n ——
1<J <1

<1

Unser Vorgehen ist nun wie folgt: Wir werden eine irreguldre Partition schritt-
weise verfeinern, sodass der Wert unter ¢ mindestens um einen Wert in Abhén-
gigkeit nur von € steigt. Da er nach oben beschrankt ist durch eine Konstante,
werden wir sie nach einer beschrankten Anzahl an Verfeinerungen e-regulér ma-
chen.

Als erstes zeigen wir, dass eine die Verfeinerung einer Partition deren Wert
unter ¢ nicht senkt.
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Satz 4. Seien A, B C V disjunkt, A und B Partitionen von A bzw. B, so gilt

q(A,B) < q(A,B)

und fiir eine Partitionen P von V und einer Verfeinerung P’ dieser gilt

q(P) < q(P")

BEWEIS (2) A= {Al,AQ}, B = {Bl,BQ}, A= UAZ, B= UB1

9(A,B) = q(A;i, B))

4,7
iz |4, Bjl|?
n? |Ail| B
=||A,B|?
2
> 114, Byl
(1) o
> LAY
n Z|Az‘\|3ﬂ
2]
=(2A;)(EBy)

(2)

3)

(3): 0.BAA. P={X,Vi,...,Via} und P = P—X+{X;, X5} mit X = X;UX,.

(2)
Q(vaz) S Q({Xth},Vz)
=q(X1,Vi) + q(X2,V})

nun folgt

q(P') = q(X1,X2) + > q(Vi, Vi) + > a(X1, Vi) + ;q()@, Vi)

i<j i

>0
>3 a(X4, Vi)

> ZCI(VwVJ) +ZQ(XﬂV;)

i<j i

=q(P)

Satz 5. Sei ¢ > 0, A,B C V disjunkt. Ist (A, B) e-irregulir, so existieren

Al,AQ,Bl,BQ mit A = AlUAQ, B = BlUBQ mit

4 |AllB]
€ n2

q(A, B) + < q({A1, A2}, {B1, Ba})
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BEWEIS Seien (A, B) ein e-irreguléires Paar, also gibt es |A;| > €|A|, |B1| > €| B
mit
|d(A,B) —d(A1,B1)| > €

=i
Setze a := |14|7 a; ‘= ‘A1|7 b:= |B|7 bi = |Bl|7 €ij ‘= ||AZ‘,BJ‘H, € = ||A,B|| Mit
(1) erhalten wir:

(A1, Ao} (B Bo}) = — 3 %

n2 &~ q;b;
(2%
2 2
_ L[ e Cij
n2 a1b1 aibj

i+j>2

2
W1 e <Ei+ >0 %')
= uo J

>
- n2 a1b1 Zi-i—jZQ aibj
1 e?, n (e —eq1)?
B n2 aq bl ab — a1b1
Es gilt ferner
arbre
€1l = L + naiby

was mit der Definition von 7 leicht nachpriifbar ist. Also:

5 1 aibie 2 1 a1b; 2
n“q({A1, A2}, {B1, B2}) > P naby | +———((1— )T nayby

a1b1 ab — a1b1
a1b162 2

~ a?b? + n2a1by

2
> % + etab = n?q(A, B) + €*ab

Wobei || > €, a1 > €a, by > €b benutzt wurde. m

Satz 6. Seien 0 < € < 1/4, P = {Vj,...,Vi} Partition von V, [Vo| < en
Ausnahmemenge und |V;| = |V;| = r fiir (i # j). Ist P e-irregulér, dann existiert
eine Partitition P’ = {V{,...,V/} von V mit Ausnahmemenge V{, | € [k, k4¥],
VG| < Vol +n27", [V/| = V]| und

q(P) + € /2 < q(P')
BEWEIS Sei P = {Vj,...,Vi} eine irreguldre Partition von V.

Fir 1 <4 < j < k definieren wir Partitionen P;; von V; und Pj; von V; wie
folgt:

2 Ausmultiplizieren, der lineare Teil beider Terme kiirzt sich heraus, dann werden die qua-
dratischen (und daher nichtnegativen) Teile des zweiten Terms nach unten abgeschétzt.
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Ist (V;, V) eregulér dann P;; := {V;} und Pj;; := {V;}.
Ansonsten kénnen wir (V;,V;) nach dem vorherigen Satz in 2-er Mengen P;;
und Pj; zerlegen, sodass gilt:

naing
2

q(Vi, V) + e < q(Pij, Pji)

Fiir ¢ € [k| sei P; die kleinste Partition von V;, welche alle V;; verfeinert (i # j),
es gilt dann |P;| < 251, Setze
N k
P={WulJP:
i=1
Dann ist [P| € [k, k2*]. Sei Py := {{v}|v € Vol
Es sind mehr als ek? der (V;,V;) und damit V;; irreguldr, daher gilt:

aP)= > a(PyP;)

1<i<j<k

> > q(Pi.Pji)

1<i<j<k

> Vi, Vi)

1<i<j<k

q9(P) + ¢ (m) 2

Y

n

Anwendungen des Regularitdtslemmas

Urspriinglich stiefs Szemerédi beim Beweis dieses Satzes auf das Regularitéts-
lemma:

Satz 7 (Szemerédi 1975). Fiir alle natiirlichen & > 3 und € > 0 existiert
ein ng € N, sodass fiir alle natiirlichen n > ng gilt: Wenn A C {1,...,n} mit
|A] > en, dann enthélt A eine arithmetische Progression der Lénge k.

Ein wichtiges Lemma, welches aus dem Regularitéitslemma folgt, ist das Fin-
bettungslemma. Der folgende Begriff wird fiir die Formulierung dieses Lemmas
bendtigt:

Definition 3 (Regularititsgraph). Zu gegebenem ¢ > 0,d € [0,1],m € N
und Vi, ..., Vj Partition einer Eckenmenge V' mit |V;| = m konstruieren wir den
Graphen R mit Eckenmenge Vi,...,V, und Kanten zwischen V; und V; genau
dann wenn (V;, V;) ein e-reguldres Paar mit Dichte > d ist. R heift Regularitéts-
graph 3. Fiir ein s € N entsteht R, aus R in dem die Ecken durch s Ecken ersetzt
werden und vormals verbundene Ecken nach dieser Transformation vollstandige
bipartite Graphen K ¢ werden.

3 Auch Cluster Graph und Reduced Graph genannt.
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Lemma 2 (Einbettungslemma). Vd € (0,1] und A > 1 existiert ein ¢y > 0,
sodass fiir einfache Graphen G und H mit A(H) < A gilt: Fiir den Regularitéts-
graphen R von G mit den Parametern € < ¢y, m und d, sowie s € N:m > 5—2,
dann folgt aus H C R, dass H Teilgraph von G ist.

BeEwEIs Sei d € (0,1] und A > 1 gegeben. Da gilt
(d—e)A—Aee—_m)dA

kénnen wir wegen des Zwischenwertsatzes und der Stetigkeit des Ausdruckes in
€ €p € (0,d) mit

TRV

wahlen. Jetzt halten wir s € N, m > 3—‘27 G, H und R von G mit den obigen
Eigenschaften fest. Sei V(R,) = {V{*,...,V¥} und H C R,. Nummerieren wir
die h Ecken uq,...,u, von H so erhalten wir eine Zuordnung o : [h] — [k] mit
u; € V;(i) fir ¢ = 1,...,h. Nun wollen wir H in G einbetten, dafiir wéhlen wir
fiir jedes u; ein v; € V,(;), sodass aus u;u; € E(H) folgt, dass v;v; € E(G).
Ziel: Fiir i € [h]:

Voiy = VP2 VD ... DV ={uv}
Sodass u; — v; H in G einbettet.

Algorithmus: .
Dabei wird v; € V;_l so gewdhlt, dass fiir die maximal A vielen j > ¢ mit

Algorithm 1 Iterative Einbettung
1: VZ-O = Vo) Vi € [h]
2: foralli=1...h do
3 Wihle v; € V!

7

4: forallj=¢+1...h do
5: if UUj € E(H) then
i vri—1
6: V; = V]
7 else
i 7—1
8: Vi=Vn N(v;)
9: end if
10: end for
11: end for

wu; € E(H) gilt ‘ '
Vi = (d= eV

Das geht nach Satz (1) mit den Mengen V, ;) und Vji_1 C V,(j)- Damit fallen
maximal Aem Wahlen von v; weg. Folgendes muss noch gezeigt werden:

1. Es miissen in jedem ViF1 noch s mogliche v; tibrig bleiben (maximal s —1
Ecken aus V,(;) konnen schon eingebettet worden sein). Das ist dquivalent
zu

Vit — Aem > s
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2. \Vij*l\ > em damit wir den Satz (1) anwenden kénnen (j > ¢ und w;u; €
E(H))

Erinnern wir uns an e < ey, m > 2s/d>, A(H) < A und der Wahl von ¢ so
gilt:

VI~ — Aem > (d — €)®m — Aem
> (d—e0)®m — Aegm
1
>s
so folgen beide Behauptungen. [
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