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I Grundlegendes

Im folgendem sollen kurz notwendige Definitionen und Séatze fiir den Vortrag
ohne Beweis zitiert werden.

Definition 1 (Notation).
Sei (M,d) ein metrischer Raum. Gegeben sei ein Punkt x € M und r > 0.
Es sei

N(z,r):={ye M |d(x,y) <r}

die abgeschlossene r-Umgebung von x in M. Fiir @ C M wird auch N(Q,r) :=
U,eq N (y,7) geschrieben.

@ heifst r-dicht in M, wenn N(Q,r) = M gilt. Ist @ fiir ein r > 0 r-dicht in
M, dann heifit () kobeschrankt in M. Der Durchmesser von () ist

diam(Q) :=sup{d(z,y) | z,y € Q} € RU{o0}.

Ist der Durchmesser einer Menge () endlich, so heisst sie wie iiblich be-
schrinkt.

Definition 2 (Geodéten).
Sei I C R ein Intervall. Dann heift ein Weg v : I — M im metrischen Raum
(M,d) (normierte) Geodéte, wenn

d(y(t),7(u)) = [t —ul.

fir alle t,u aus M gilt. Gilt d(y(t),v(u)) = At — u| fir ein A € R, so
heift v (konstante) Geodéte. (M, d) nennen wir ein geoditischen Raum
(Ladngenraum), wenn jedes Paar von Punkten durch (normierte) Geodéten
verbunden werden kann. Ein metrischer Raum (M, d) heift eigentlich, wenn
er vollstdndig und lokalkompakt ist.

Es werden Gruppenoperationen auf metrischen Rdumen betrachtet. Genau-
er sei X ein eigentlicher Lingenraum und I' eine Gruppe die darauf iiber
[sometrien operiert. Man kann die Gruppenaktion nun als Gruppenhomo-
morphismus I' — Isom(X) von der Gruppe in die Menge der Isometrien von
X auffassen. Dementsprechend hat man die Definition der Bahn/des Orbit
[z von z € X und des Stabilisators von x € X: stab(z) := {g € ' | gz = x}.
Sie heift frei, wenn nur das neutrale Element von I' jedes z € X festhilt.
Das heisst es wird nur das neutrale Element auf Idy € Isom(X) abgebildet.
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Definition 3 (eigentlich diskontinuierlich).
So eine Gruppenaktion auf X heift eigentlich diskontinuierlich, wenn fiir
alle » > 0 und allen z € X die Menge

{g el |d(z,gr) <r}

endlich ist. Eine solche Aktion heifst kokompakt wenn X/F kompakt ist.
Hierbei bedeutet die Quotientenbildung mit I', dass Bahnen miteinander
identifiziert werden.

Satz 1 (Charakterisierung von e.d.k. Aktionen).
Folgende Aussagen sind fiir eine eigentlich diskontinuierliche Gruppenaktion
auf einen metrischen Raum dquivalent:

1. Die Gruppenaktion ist kokompakt.
2. Ein Orbit ist kobeschrankt.

3. Alle Orbiten sind kobeschrankt.

Definition 4 (Quasiisometrien).

Eine Abbildung ¢ : X — X' zwischen zwei metrischen Raumen (X, d) und
(X', d') heift quasi-isometrisch, wenn es Konstanten ky,..., ks > 0 gibt
mit

kid(w,y) — ke < d'(d(2), 9(y)) < kad(z,y) + ka,

wobei sogar k; > 0 ist. Wenn im ¢ fiir eine Konstante & > 0 k-dicht in X’
liegt (d.h. ¢ ist kobeschriinkt), dann heisst ¢ Quasiisometrie.

Anschaulich gesehen existiert eine Quasiisometrie zwischen zwei Riumen,
wenn diese aus der Ferne betrachtet identisch aussehen.
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IT Konstruktionen

Definition 5 (Aquivarianz).
Sei ¢ : A — A’ eine Abbildung zwischen Caley-Graphen A, A’ der selben
Gruppe I'. Dann heifst sie Aquivariant, wenn fiir alle z € A, g € I gilt:

99(r) = ¢(gz).

Satz 2 (endl. erz. Caley-Graphen sind quasiisometrisch).
Seien S, 5" endliche Erzeugendensysteme einer Gruppe I', dann gibt es eine
aquivariente Quasiisometrie

A(T;S) — AT 8.

BEWEIS

Seien d,d" die geoditischen Metriken auf A := A(T'; S) bzw. A" := A(T'; 5").
Es ist S = {a1,...,as}, S = {by,...,0;} C I mit s,t > 1. Da S’ ein
Erzeugendensystem von I' ist, ldsst sich fiir ¢ = 1, ..., s schreiben:

a; = by bpy

fiir ein minimales n; und b;; € S’. Insbesondere kénnen wir o. E. annehmen,
dass wenn a; € S dann ist auch a; ' € S. Es gilt dann

ni =d(1,a;) <max{d'(l,a) |a € S} =:r.

Erweitert man Idr : V(A) — V(A') auf eine Funktion ¢ : A — A/, die
die Geodéte von vy nach vy = wyq; fiir ein @ € {1,...,s} linear auf die
Geodite der Liange n; abbildet und zwar ¢(v;) = v; wird abgebildet auf
d(v2) = via; = vaby; -+ - by, ,; iiber die Kanten assoziiert mit den Erzeugern
by ; bis b, ;. Fiir diese Abbildung gilt nun die Ungleichungskette

d(z,y) < d'(¢(x), d(y)) < rd(z,y) (z,y € D),

da jede Kante zwischen x und y durch maximal r viele durch ¢ ersetzt wird.
Damit ist ¢ quasi-isometrisch.

Wird die umgekehrte Konstruktion durchgefiihrt, erhdlt man ein quasi-inverses
¢ von ¢ und mit " = max {d(1,s’) | s € S’} ist die Verkniipfung beider Ab-
bildungen nicht weiter als 77’ von der Identitdtsabbildung entfernt. Damit
ist ¢ eine Quasiisometrie. (vgl. Bemerkung in [1]).
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Sei nun x € A und g € I'. Es muss g¢(x) = ¢(gx) gezeigt werden. Wenn
x € V(A) ist die Aussage klar, also sei z auf der Kante von v nach va; fiir ein
i€ {l,...,s}. Dann liegt ¢(z) mit Abstand n;d(v, z) auf dem Kantenzug der
durch die Multiplikationen von v by, ..., by, ; nach va; geht. Die Multiplika-
tion mit g macht daraus eine Kante von vg iiber b, ,g,...,b,, ;g nach vga;.
Dabei liegt g¢p(x) noch immer mit Abstand n;d(v, z) von vg auf der Geodéte.
Umgekehrt entspricht liegt gz auf der Kante von v nach vga; mit Abstand
d(v,z). Anwendung von ¢ ergibt nun ¢(gz) der mit den selben Abstand wie
go(x) auf der gleichen Geodite/Kantenzug von vg nach vga; liegt. Damit ist
¢ auch dquivariant. [

Korollar 1.

Caley-Graphen von endlich erzeugten Gruppen sind bis auf Quasiisometrie
eindeutig bestimmt. A(I") := [A(T", §)]~ fiir eine Gruppe I" und ein beliebiges
endliches Erzeugendensystem S von I' ist somit wohldefiniert, wobei ~ die
Quasiisometrie Relation zwischen metrischen Ridumen bezeichnet.

Analog heifsen zwei endlich erzeugte Gruppen I', I quasi-isometrisch in Zei-
chen I' ~ T”) wenn A(T") = A(TY).

Beispiele:

(1) Alle endlichen Gruppen sind quasi-isometrisch zueinander, denn ihre
Caley-Graphen sind beschrankt.

(2) Wenn p,q > 2, dann F, ~ F,. Mit den freien Erzeugendensystemen sind
die Caley-Graphen genau die beiden reguldren Baume 75, und T5,. Das folgt
daraus, dass T,, ~ T,, fir n,m > 3.

(3) Fiir p > 2 gilt F, £ Z, aber Fy ~Z (da Ty ~ 7). *
4 Z~Z ><Z/2Z mittels der Projektion auf die erste Koordinate.

Eine endlich erzeugte Gruppe I ist quasi-isometrisch zu einem Lingenraum
X, wenn A(T") ~ X gilt, in Zeichen I' ~ X.

Beispiele:
(1) Z (als Gruppe) ~ R (als metrischer Raum).
(2) Z* ~ R?.

'Dass Tb, o Z fiir p > 2 wurde im Vortrag gezeigt, gehort aber eigentlich zum Vortrag
davor.
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In der folgenden Konstruktion operiert eine Gruppe I' eigentlich diskontinu-
ierlich kokompakt auf einen eigentlich Langenraum X. Es wird ein Punkt
a € X fixiert und die Bahn T'a von a liegt dann r-dicht in X fiir ein
r > 0 (siehe 1). I" sei ein Graph mit Eckenmenge I" und gh € E(I") gdw.
d(ga,ha) < 2r +1 =: k. Da die Aktion eigentlich diskontinuierlich wirkt, ist
A lokal endlich. Diesen Graph nennen wir k-Distanzgraph auf der Bahn
Ta in Zeichen (A(2r + 1;Ta)).

Satz 3 (Distanzgraph auf Bahnen ist zusammenhingend).
A(2r+1;Ta) ist zusammenhéngend (als Graph), wenn I'a r-dicht in X liegt.

BEWEIS
Seien ga und ha zwei Ecken aus A. Da A C X, existiert eine Geodéte zwi-
schen xg := ga und ha. Nun lassen sich zq,...,x, := ha auf dieser Geodite

finden, so dass d(x;,z;41) < 1 fiiri =0,...,n — 1 gilt. Da I'a r-dicht in X
liegt, existieren g; € I' mit d(g;a,z;) < rfiri=1,...,n— 1. Insgesamt folgt
mit ¢ = 0,...,n — 1 fiir die Absténde

d(gia, giv1a) < d(gia, x;) +d(@;, xig1 +d(Tit1, gia) <r+1+r=2r+1 =k,

so dass gilt g;a ist in A mit g;1a mit einer Kante verbunden. Damit existiert
aber ein Weg in A von g nach h. ]

Diese Konstruktion liefert uns unmittelbar ein endliches Erzeugendensystem
fiir die Gruppe I':

Satz 4 (e.d.k. wirkende Gruppen auf eigtl. Lingenrdume sind endl. erzeugt.).
Wenn I' eigentlich diskontinuierlich kokompakt auf einen eigentlichen Lan-
genraum X agiert, dann ist ' endlich erzeugt.

BEWEIS

In der obigen Situation ist die Menge A = {g € I'\ {1} | d(a, ga) < k} end-
lich und symmetrisch. Es ist A := A(2r + 1,Ta) genau der Caley-Graph
A(T; A) bis auf die doppelten Kanten von Elementen der Ordnung 2. Denn
fiir g, h € Aist nach Anwendung der Isometrie g=! g7 'h € A gdw. 1und g~ h
verbunden in A sind gdw. g und h eine gemeinsame Kante in A besitzen. Es
ist A dann aber auch ein Erzeugendensystem der Gruppe I'. [
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Satz 5 (Quasiisometrie von e.d.k. Gruppenaktionen auf eigtl. Lingenrdume).
Wenn I' eigentlich diskontinuierlich kokompakt auf einen eigentlichen Lén-
genraum X agiert, dann gilt I' ~ X.

BEWEIS

Seia € X, k=2r+1 (Taist r-dicht in X). Es wird nun eine Quasiisometrie
f A= A@2r+1;Ta) - I'a C X konstruiert. Fiir g € I' = V(A) ist
f(g) = gaund gh € E(A) wird linear auf eine Geodite in X zwischen ga und
ha abgebildet (dies kann auch dquivariant getan werden). Seien g, h € T', dann
kénnen wir die Geodéte von ga und ha unterteilen in Punkte mit Abstand
< 1, wobei wir nicht mehr als Linge der Geodéte + einen Punkt benétigen.
Analog zum Beweis von 3 finden wir einen Weg in A, also

Umgekehrt gilt
d(f(g), f(h)) < kda(g, h),

und im f = I'a ist kobeschrinkt in X. Da alle Punkte auf den Kanten be-
schrinkten Abstand zu den adjazenten Ecken haben, folgt, dass f eine Quasi-
isometrie ist. A ist aber auch ein Caley-Graph von I und damit gilt I' ~ X .m

Es folgt nun leicht ein Resultat aus der Gruppentheorie:

Korollar 2 (UGs mit endl. Index in endl. erz. Gruppen sind endl. erz.).
Ist T" endlich erzeugt und G < T eine Untergruppe mit endlichen Index. Dann
ist G endlich erzeugt und G ~ T.

BEWEIS
Sei A ein Caley-Graph von I'. Die e. d. k Aktion I' — Isom(A) eingeschrénkt
auf G ist eigentlich diskontinuierlich. Sie ist auch kokompakt, denn es ist

i=1

mit geeigneten ¢g; € I'. Die Bahn I'l = I' ist kobeschriankt und liegt damit
r-dicht in A fiir ein 7 > 0 per Definition. Nun liegt G1 = G max(d(1, g;)) +7-
dicht in A und damit ist die Bahn G1 kobeschrankt und damit ist die Aktion
G — Isom(A) kokompakt. Es folgt nun G ~ A ~ T. n
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IIT Kommensurabilitit und virtuelle Eigenschaf-
ten von Gruppen

Definition 6 (Kommensurabel).

Zwei Gruppen I'1, 'y heifen kommensurabel (lat. zusammen mefbar, in
Zeichen T'; &~ I'y), wenn es Untergruppen G; < I'; mit [I['; : G;] < oo fiir
i = 1,2 gibt, die zueinander isomorph sind (G; = G).

Bemerkung: Wenn 'y ~ I'y gilt, dann ist ['; endlich erzeugt genau dann
wenn [y endlich erzeugt ist. Dies liegt daran, dass auch jeweils die Unter-
gruppen endlich erzeugt sind und sich diese Eigenschaft {iber die Isomorphie
und dem endlichen Index wieder auf die andere Gruppe iibertrégt.

Satz 6 (=).
~ ist eine Aquivalenzrelation

BEWEIS

Es ist nur die Transitivitidt unklar. Dies folgt aber daraus, dass fiir zwei
Untergruppen Uy, U; < G mit endlichen Index, auch der Index [U; : U; N Us]
fiir y = 1, 2 endlich ist. [

Fiir endlich erzeugte Gruppen I'y,T"y folgt aus der Kommensurabilitit der
beiden Gruppen, dass diese auch quasiisometrisch zueinander sind.

Definition 7 (Torsionsfrei).
Eine Gruppe I' heifst torsionsfrei, wenn aus ¢” = 1 folgt ¢ = 1 fiir alle
gel.

Definition 8 (virtuelle Eigenschaften).
Eine Gruppe I' hat virtuell eine Eigenschaft, wenn es eine Untergruppe von
[’ mit endlichem Index gibt, die diese Eigenschaft besitzt.
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Satz 7 (Uber virtuell Z-sein).
Sei T' eine endlich erzeugte Gruppe die quasiisometrisch zu Z ist (I' ~ Z).
Dann ist I" virtuell Z.

BEWEIS
Angenommen es gibt ein g € I' mit ord g = oco. Setze

G=(9)=Z

und die Behauptung ist, dass [I' : G| < oo.
Dazu sei A ein Caley-Graph (endl. Erzeugendensystem!). Es gilt dann:

d(g",g™) =d(1,¢g™™"), d(1,9") — co(n — o)
Da ' ~ Z ~ R kann eine Quasiisometrie ¢ : A — R gewihlt werden. Setze

f:Z =R, f(n)—o(g")

Das Bild von f ist kobeschriankt in R. Denn es gilt wegen der Quasiisometrie

krd(1, 9") — k2 < d((1), 6(g")) = d(£(0), f(n)) (Vn € Z)

fir k; > 0 und ky > 0. Damit ist |f(n)| — oo(n — %00). Ferner kann aus

kd(g™", ") — ko = kd(1,9°") — k2 < d(¢(g7"), 8(g") = d(f(—n), f(n))

gefolgert werden, dass lim,_,o(|d(f(—n), f(n))|) = co. Ohne Einschrinkun-
gen f(n) — oo und f(—n) — —oo. Ferner gibt es ks, ky > 0 mit:

|f(n) = fln=1)] <d(o(g"), ¢(g" ")) < ksd(1,g) + kg =t 7

womit im f r-dicht in R liegt.

Da ¢ eine Quasiisometrie ist, folgt, dass G = f~![R] C V(A) kobeschriinkt
in A ist, also ist A/G ein endlicher Graph, also

real= g = vl <

wobei mit I'/G die Menge an Rechtsnebenklassen von G in I' gemeint ist.

Es verbleibt zu zeigen, dass es so ein Element gibt. Fiir diesen Teil wird auf
[1] verwiesen. n
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Frage: Wann folgt aus ' ~ IV = T' = [?
Positive Beispiele:

(1) Wenn eine der Gruppen endlich ist, dann miissen beide endlich sein und
die Aussage stimmt.

(2) Wenn I' virtuell Z ist, dann folgt aus [I" : Z] < oo, dass Z ~ I' ~ I".
Wire I nicht endlich erzeugt, dann wire der Caleygraph nicht lokal endlich
und damit kann keine Quasiisometrie von Z nach einem A(I") kobeschrénkt

sein. Also ist I endlich erzeugt und damit virtuell Z. Damit gilt aber auch
~T1".

(3) Seien I'; T endl. erzeugt und virtuell abelsch. Sei G < I' abelsch mit
endlichem Index, dann folgt dass G endl. erzeugt ist und damit

c=2" <[z

nun gilt auch Z" ~ G ~ I'. Ein analoges Argument zeigt Z™ ~ I” und damit
n =m und es folgt I' = I".

(4) Dies bleibt wahr, wenn nur eine der beiden virtuell abelsch ist. Das heisst
jede endlich. erzeugte Gruppe quasiisometrisch zu einer virtuell abelschen
Gruppe (endl. erz.) ist selbst virtuell abelsch.

(5) Beide Gruppen sind virtuell frei. Hier fehlt noch der Fall F,,, F, fiir
m,n > 2 siehe Kapitel 4 in [1].

(6) Auch hier kann fiir eine der beiden Gruppen die Voraussetzung fallen
gelassen werden.

(7) Beispiele von Flichen mit Bezug zur Hyperbolischen Geometrie ([1] Ka-
pitel 5).

Quasiisometrische Invarianten: Unter Quasiisometrien invariante Eigen-
schaften heifsen auch geometrisch, z. B.:

(1) Endliche Darstellbarkeit: T" ~ I”, dann ist T" endl. darstellbar gdw. T ist
endl. darstellbar.

(2) Wortproblem: Sei I' endlich darstellbar. Worter iiber I' sind Worter
iiber Elemente und deren Inverses. Das Wortproblem ist nun die Frage ob so
ein Wort identisch dem neutralen Element der Gruppe I ist. Wenn es einen
Algorithmus gibt, der dieses Entscheidungsproblem 16st, so hat I' ein ’16s-
bares Wortproblem’. Diese Eigenschaft ist geometrisch. Fiir endlich erzeugte
Gruppen ist dies ein offenes Problem.

(3) Virtuelle Nilpotenz ist geometrisch.
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