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I Einfiihrung

Die Kryptographie ist eine uralte Wissenschaft, die sich aus dem Bediirfnis heraus ent-
wickelt, Kommunikation gegen Unbefugte zu schiitzen, also seine Daten zu sichern. In
dieser Arbeit werden grundlegende Fragen der Kryptographie beantwortet: Wann ist ein
Kryptographiesystem sicher? Was ist Pseudozufall und Einwegfunktionen? Was haben
diese mit der Kryptographie zu tun?

Gelost werden sollen von der Kryptographie unter anderem folgende Problemstellungen

1. Datensicherheit Schutz vor unbefugtem Lesen von Daten.
2. Datenintegritit Schutz vor ungewollter Modifikation der Daten.
3. Authentifikation Nachweis einer Identitit in dem man

(a) Etwas weifs
(b) oder etwas besitzt

(c) oder etwas ist.

Als grundlegendes mathematisches Objekt betrachten wir Kryptosysteme, die formale
Definition:

Definition 1 (Kryptosystem).
Ein Paar (Enc, Dec) von Funktionen

Enc: K x M —C, (k,z) — Ency(z)

und
Dec: K xC — M, (k,y) — Deck(y)

mit den Mengen M, C, K (Klartext-,Chiffretext- und Schliisselmenge) heiftt Kryp-
tosystem, wenn zusétzlich die Bedingung gilt

Dec;, o Enc;, = Id (Vk’ S ’C)

Im ersten Teil wird die von Shannon eingefiihrte perfekte Geheimhaltung in Shannon
(1949) dargestellt. Hier wird mit Hilfe der Informationstheorie versucht Sicherheit eines
Kryptosystems zu definieren. Das Hauptergebnis dieses Paragraphen ist, dass das One-
Time-Pad diese Definition erfiillt und dabei minimale Schliissellinge besitzt - diese ist
jedoch immer noch so lang wie der Nachrichtentext.

Im zweiten Paragraphen wird mit Hilfe der Komplexitéitstheorie versucht Sicherheit eines
Kryptosystems zu beschreiben. Dabei werden die Forderungen gelockert um effizientere
Kryptosysteme zu ermoglichen. Es werden Einwegfunktionen und die Rolle der P = NP
Frage fiir die Kryptographie erortert. Zwei Beispiele fiir vermutete Einwegfunktionen -
RSA und die Rabinfunktion - werden gezeigt.



Der dritte Paragraph diskutiert den Pseudozufall und seine Rolle fiir die Kryptographie.
Dabei werden die fiir die Kryptographie wichtigen Pseudozufallsgeneratoren eingefiihrt
und bewiesen, dass aus der Existenz von Einwegfunktionen sich Pseudozufallsgeneratoren
konstruieren lassen. Unter anderem wird dafiir das Lemma von Yao und das Goldreich-
Levin-Theorem bewiesen. Schliesslich wird der Beweis fiir eine Abschwéchung des Satzes
gegeben: Aus Einwegpermutationen lassen sich Pseudozufallsgeneratoren konstruieren.

Schliesslich werden im vierten Teil Zero-Knowledge Beweise gefiihrt. Diese Systeme er-
moglichen es Aussagen zu beweisen ohne Informationen preiszugeben, die ein polynomi-
eller Algorithmus eh hétte ermitteln kdnnen.

II Perfekte Geheimhaltung

Definition 2.
Ein Kryptosystem (Enc, Dec) iiber B" bietet perfekte Geheimhaltung, falls fiir jede
Verteilung D von Nachrichten, jeder Nachricht m und jeden auftretenden Chiffretext c
gilt

Pr(M =z |C=c¢=Pr[M=z

Das heisst unter der Kenntnis eines beliebigen Chiffretextes erhalten wir keine Infor-
mationen iiber den Klartext im wahrscheinlichkeitstheoretischen Sinne. Aquivalent dazu
ist, dass die Verteilung der Klartexte unabhédngig von der der Chiffretexte ist. D. h.
Ency, () = Ency, (2')

Lemma 1 Fiir ein Kryptosystem II = (Enc, Dec) sind die folgenden Aussagen dquiva-
lent

1. IT bietet perfekte Geheimhaltung.

2. Fiir jede Verteilung auf M und allen x € M, y € C gilt:
PriC=y|M=z]=Pr|[C=y.

3. Fiir jede Verteilung auf M und allen zy, x; € M und c € C gilt

PriC=y|M=u2y|=Pr[C=y|M=ux]

BEWEIS

1. < 2.: Einfache Umformung und Bayes.
1.,2. < 3.

'=-": Folgt direkt aus 2..



<" Sei eine beliebige Verteilung auf M und xp € M und y € C gewihlt. Definiere
p:=Pr[C =y | M = mg. Dann gilt

PriC=yl=> PriC=y|M=z]-Pr[M=a]

zeM
= ZpPr[M::E]
zeM
=P
=Pr[C=y| M=z n

Lemma 2 Ein Kryptosystem (Enc,Dec) mit Klartextmenge M und Schliisselmenge
IC bietet perfekte Geheimhaltung, dann gilt

Kl > M|

BEWEIS
Annahme: |[K] < |[M|. Sei M gleichverteilt und y € C ein Chiffretext, der auftritt. Defi-
niere

M(c) :={z | x = Decy(y),k € K}

Es gilt |[M(y)| < |K| da wir jedem Element in M (c) ein Schliissel zuordnen koénnen. Da
K| < |M]| existiert ein x € M\ M (y) fir das gilt

PriM=uz|C=y|=0<Pr[M =1]

im Widerspruch zur perfekten Geheimhaltung. [

Shannon lieferte auch eine Charakterisierung fiir Kryptosysteme mit perfekter (Geheim-
haltung

Satz 1 (von Shannon).
Sei (Enc, Dec) ein Kryptosystem mit || = M| = |C|. Dann bietet das Kryptosysteme
perfekte Geheimhaltung genau dann wenn folgende Bedingungen gelten:

1. Die Schliissel werden gleichverteilt gewahlt, d. h. K ~ Ug.

2. Fiir alle Nachrichten z € M und Chiffretexten y € C existiert genau ein k£ € K mit
y = Ency(z).



BEWEIS

'=": Sei (Enc, Dec) mit perfekter Geheimhaltung. Fiir alle z € M und y € C muss ein
k € K existieren, sodass y = Ency(z). Fiir ein festes z € M! gilt also fiir die Menge
E(z) := {Encg(x)}rex, dass |E(z)| > |C| und damit |E(x)| = |C| = |K|. Damit ist
Enc(-, z) injektiv, also existiert maximal ein Schliissel um x +— y fiir alle y € C. Variation
von x € M und die Existenz eines Schliissels geben die zweite Aussage.

Nun sei k& € K und das Ziel ist es Pr[K = k] = L mit n := |K| zu zeigen. Sei M =
{z1,...,2,} und y € C fest. Sei ky, ..., k, € K, sodass

Ency, (z;) =y (1 <i<n)
Nun gilt wegen der perfekten Geheimhaltung fiir beliebige ¢ = 1,... n:

PrM=uz)]=Pr[M=ux;|C =y
:Pr[C=y|M:xi].Pr[M:xi]
PI’[C:y]
_Pr[K:k’i]'Pr[M:xi]
B PI‘[C:y]
& Pr|{C =yl =Pr[K =k

= K ~U,.

‘<" Es folgt direkt
1
PriC=y|M=z]=—
K]

unabhéngig von der Verteilung auf M. Also haben wir fiir alle Verteilungen auf M, allen
x,r’ € M und jedem y € C:

1 /
Pr[C:y]M:x]:W:Pr[C:y]M:x]

so dass unser Kryptosystem perfekte Geheimhaltung bietet. [
Und ein Kryptosystem welches perfekte Geheimhaltung bietet ist:

Definition 3 (One-Time-Pad).
Seien K = M = C = {0,1}" fiir ein n € N. Dann heisst (Enc, Dec)

Ency(z) ==z ® k, Deci(y) ==y dk

One-Time-Pad (Vernam Chiffre).

Der Satz von Shannon zeigt, dass das One-Time-Pad perfekte Geheimhaltung bietet.

!Welches auftritt, aber diese Annahme machen wir immer.



IIT Berechnungssicherheit

Zuerst noch ein Ergebnis, welches uns ein Strich durch sichere Kryptographie macht.

Lemma 3 Sei P = NP und (Enc,Dec) in Polynomialzeit berechenbar mit einer
Schliissellinge von n = n(m) < m bei Nachrichtenlinge m. Dann existiert ein Po-
lynomialzeitalgorithmus A, so dass fiir alle Eingabeldngen m gilt: es gibt es ein Paar
T, 1 € {0, 1}™ mit

Pr [A(Ean<$b)) = b] >

ber{0,1}
ker{0,1}

o

BEWEIS

Sei (Enc,Dec) mit m € N und n = n(m) < m fest. Definiere S := Ency, (x¢) mit
xo := 0™. Da P = NP ist gibt es polynomiellen Algorithmus A der S entscheidet. Das
heisst A(y) ist gleich [y € S].

Es fehlt nun noch ein geeignetes x; € B™. Sei dazu D, ~ Ency, (z) die Verteilung der
Verschliisselungen von x € B™. Per Konstruktion ist dann

Pr[A(D,,) = 0] = 1.

Ferner gilt

sodass wenn z; die Ungleichung Pr [A(D,,) = 1] > 1 erfiillt der Beweis vollbracht ist.
Dies ist aber zu

Pr[D,, € §] <

DO | —

dquivalent. Fiir € B™ und k € B" sei die Zufallsvariable S(z, k) definiert als:
1, E S

S(x, k) = { » Bil(z) €

0, sonst

Zum Zwecke eines Widerspruchsbeweises Pr [D,, € S]] >
folgt eine Abschitzung fiir den Erwartungswert von S(z, k):

% fiir alle z; € B™. Daraus

B [S@h] > )

Nun gilt fiir einen festen Schliissel k, dass die Funktion Ei(-) : x — Encg(z) wegen
Dec o Enc = Id injektiv sein muss. Nun gilt die Ungleichungskette

S| < 2" < 2™ < Jim By (-)| = 2™
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woraus folgt
E [S(z k)] <

zeB™

N | —

und damit im Widerspruch zu (1) folgt

Definition 4 (Vernachlissigbare Funktionen).
Sei € : N — [0,1] C R, dann heisst € vernachléissigbar, wenn e(n) = n=<(M). D. h. fiir
alle ¢ > 0 existiert ein N € N, sodass €(n) < n~¢ fiir alle n > N gilt.

Es gilt
lim €(n) =0

n—0o0

und dieser Ausdruck konvergiert so schnell, dass man es in praktischen gelangen ver-
nachldssigen kann. Mit vernachlassigbaren Funktionen wollen wir Ereignisse modellieren,
welche praktisch nie eintreten.

Definition 5 (Einwegfunktionen).
Eine in Polynomialzeit berechenbare Funktion f : B* — B* heift Einwegfunktion, falls
fiir alle A € PPT gilt:
Pr [A(y) = «/ mit f(z') =y
yief(x)

ist vernachlassigbar in n € N.

Gilt |f(z)| = |z| fiir € B", so heisst f lingenerhaltend. Ist f eine injektive , linge-
nerhaltende Einwegfunktion, dann heisst f Einwegpermutation.

Vermutung: Es existiert eine Einwegfunktion.

Satz 2.
Wenn P = NP, dann existieren keine Einwegfunktionen.

Beispiel (Faktorisierung):

Betrachtet man die Multiplikation a - b =: N zweier Zahlen a,b € N, so ist die Umkeh-
rung im gewissen Sinne die Faktorisierung einer Zahl in ihren Primfaktoren. Der naive
Algorithmus, die Probedivision von Teilern bis v/N ist exponentiell in der EingabegroRe
log(N). Es gibt einen Faktorisierungsalgorithmus (siehe (Lenstra u.a., 1990)) mit einer
oberen Laufzeitschranke von 20(0s'/* NvloglogN)



Das néchste Beispiel bendtigt die eulersche ¢-Funktion fiir diese gilt

o) =11 <j<n|eaTGn) =1 =|(Zz)

Beispiel (RSA):
Fir ein n € N sei N = N(n) € N eine zusammengesetzte Zahl und e € N mit
ggT(p(n),e) = 1. Im Regelfall ist N das Produkt zweier verschiedener Primzahlen

p,q # 2. Es ist dann fiir x € (Z/NZ)*:
Ency () = RSAw,(x) = pv(a)

die Chiffrierungsfunktion vom RSA-Kryptosystem mit py : Z — Z/ v 7, der Reduktion
modulo N. Dechiffriert werden kann ein Chiffretext y mit einem geheim gehaltenen d,
welches die Gleichung

ed=1 mod ¢(N)

erfiillt und zwar mit
DeC(N,e) (y) = PN(yd)

Kennt man den Wert von ¢(N), so ldsst sich d effizient mit dem euklidischen Algorith-
mus bestimmen. Es ldsst sich ¢(NV) effizient unter Kenntniss der Primfaktorzerlegung
berechnen. Im allgemeinen Fall gilt fiir n = [[;_, p* mit verschiedenen Primzahlen p;:

@(n) = Hp?"_l(pi —1)

wie man z. B. mit dem Inklusion-Exklusionsprinzip zeigen kann.

Beispiel (Rabin):
Sei N = P(@) wieder das Produkt zweier verschiedener Primzahlen grofer 2. Zusatzlich
gelte P, (Q =3 mod 4. Wir betrachten die Menge der quadratischen Reste

QRy =1{2€Zy |3y el y* =2}

wobei Z, := Z/nZ fiir n € N. Das Verschliisseln ist nun das quadrieren einer Zahl

mod N. Die Dechiffrierung ist das Quadratwurzel ziehen in Zy. Da der Empfianger die
Faktorisierung von N kennt, kann er mit Hilfe des chinesischen Restsatzes das Problem
auf die simultane Quadratwurzelbestimmung in Zp und Zg reduzieren. Wegen P, () = 3
mod 4 gilt aber:

AP/ — /2 mod P

und analog fiir (). Mit Hilfe des schnellen Exponentierens ldsst sich so die Quadratwurzel
effizient bestimmen.



Definition 6 (Levins universelle Einwegfunktion).
Es ist f;; Levins universelle Einwegfunktion wie folgt definiert:

Die Eingabe wird geeignet zerteilt: © = 1 - Ziogpn (n = |z|) mit |z;] = @ fir i =

1,...,logn. Sei (M;);en eine Abzdahlung aller Turingmaschinen. Dann gilt

fu(@) = M (1) - My (T10g)

wobei
(2) {Mi(:p), M; terminiert nach <t Schritten.
€Tr) =

0l=l, sonst

Satz 3.
Falls es eine Einwegfunktion gibt, dann ist f;; eine Einwegfunktion.

BEWEIS

Falls eine Einwegfunktion f : B* — B* existiert, dann existiert auch eine Einwegfunktion
g mit Laufzeit n? fiir groke n. Denn sei p(n) ein Polynom, welches die Laufzeit von f be-
schriankt, dann kann eine neue Funktion g definiert werden, welche die ersten [n?/p(n)]n
vielen Bits der Eingabe auf f ausfiihrt. Angenommen g ist keine Einwegfunktion, dann
kann auch f durch Auffiillen von Bits in der Eingabe (der Teil der verworfen wird) effi-
zient (Polynome sind unter Komposition abgeschlossen) invertiert werden.

Sei g so dass M, so ein g berechnet. Das heisst Einwegfunktion und n? Laufzeit. Be-
trachte geniigend grofe n, sodass ig < [logn| (dann wird die Eingabe nicht aufgefiillt)
und das invertieren von M, wird von jedem A € PPT mit in n/logn vernachléssigbarer
Wahrscheinlichkeit gefunden. Wegen

Cc—¢€

n/logn <n < n<n ‘logn<n”

fiir alle ¢ > 0 und geeignetem ¢ > 0, sodass —c — € > 0 fiir alle n > N mit geeignetem
N. [

Auf Einwegfunktionen lésst sich ’berechnungssichere’ Kryptographie autbauen, es gilt:

Satz 4.

Wenn Einwegfunktionen existieren, dann gibt es ein ¢ € N, sodass es ein berechnungssi-
cheres Kryptosystem (Enc, Dec) gibt, welches eine Schliissellinge von n und Nachrich-
tenldnge von n° hat.

Berechnungssicherheit bedeutet fiir ein Kryptosystem (Enc, Dec) mit Schliisselléinge
n und Eingabeldnge m, dass wir fiir alle A € PP7T eine vernachlissigebare Funktion e
haben, so dass (z; bezeichne das i-te Bit von der Nachricht z):

P A(E = (¢ d.x; =0bl >
keR{Ol:l}”[ (Ek(z)) = (,b) s. d. z; = b] >
z€R{01}™

+ ¢(n)

N | —

gilt. Das heisst iiber kein Bit der Nachricht x kann ein Angreifer mit nicht vernachlissig-
barer Wahrscheinlichkeit Informationen in Polynomialzeit errechnen.
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IV  Pseudozufall

Um sichere Kryptosysteme konstruieren zu konnen, ben6tigt man bei der Schliisselwahl
den Zufall. Beim One-Time-Pad ist der Schliissel so lang wie der Klartext - eine praktisch
nicht immer giinstige Losung. Eine Idee ist es aus einem kleinen Schliissel einen Strom an
Pseudozufallszahlen zu erzeugen und dieses als Pad fiir das One-Time-Pad zu benutzen.
Der Vorteil in dieser Konstruktion besteh darin, dass man einen viel kiirzeren Schliissel
als beim One-Time-Pad benétigt. Um diese Pseudozufallszahlen zu erzeugen benutzt
man Pseudozufallsgeneratoren, -Funktionen und -Permutationen. Diese Begriffe werden
in diesem Abschnitt eingefiihrt und untersucht.

Was ist nun Zufall? Kolmogorow definiert eine Zeichenkette der Linge n als zufillig,
wenn keine Turingmaschine mit einer Codierungsldnge von < %n die Zeichenkette n bei
einer leeren Eingabe ausgibt. Dies fiihrt zum Begriff der Kolmogorow-Komplexitét.
Leider ist die Frage i. A. unentscheidbar, daher fiir die Zwecke der Kryptographie unge-

eignet.

Ein alternativer Ansatz stamm aus der Statistik. Dort miissen zufilligen Zeichenketten
bzw. deren Teilmuster die Gesetze der Statistik geniigen. Jedoch existiert eine Verteilung
die diese Definition erfiillt, aber fiir Zwecke der Kryptographie ungeeignet ist.

Die Definition von Pseudozufall die der heutigen Kryptographie geniigt ist: Eine Vertei-
lung ist pseudozufillig, wenn sie nicht effizient vom wahren Zufall zuverlédssig unterscheid-
bar ist. Genauer:

Definition 7 (Pseudozufallsgenerator (PZG)).

Seien G : B* — B*, ¢ : N — N in Polynomialzeit berechenbar und gelte ¢(n) > n fiir alle
n € N. (G, ) heisst Pseudozufallsgenerator (kurz: PZG) mit Dehnung ¢, wenn gilt
|G(z)] = £(|z]) fiir alle x € B* und fiir alle A € PPT existiert ein vernachléssighares e,
sodass

Pr[A(G(U,)) = 1] — Pr [A(Usn) = 1] ] <¢(n) (neN)
gilt.

Haufig wird im folgendem auch nur G als PZG bezeichnet. Es gilt der bemerkenswerte
Satz:

Satz 5 (Einwegfunktionen = PZG).
Existiert eine Einwegfunktion, dann existieren fiir alle Polynome ¢ mit ¢(n) > n fir n € N
ein PZG (G, 0).

Der Beweis findet sich im Katz u. Lindell (2008) oder siehe die Originalpublikation Astad
u. a. (1999).

Im folgenden wird ein Lemma von Yao und das Goldreich-Levin-Theorem gezeigt um
daraufhin eine Abschwéichung des Satzes zu zeigen: Aus der Existenz von Einwegpermu-
tationen folgt die Existenz von Pseudozufallsgeneratoren. Zuerst wird noch eine Charak-
terisierung fiir Pseudozufallsgeneratoren eingefiihrt.
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Definition 8.
Sei G : B* — B* mit Dehnung /. G und ¢ sind in Polynomialzeit berechenbar. G heift
unvorhersehbar, wenn fiir alle B € PPT gilt:

Pr [B(I"yio . yim1) = 4] < 1/2+e(n) (n € N)

y=G(x)
i€pl(n)]

mit vernachléssigbaren e.

Anschaulich bedeutet die Unvorhersehbarkeit von G, dass unter Vorlage der ersten ¢ — 1
Bits das niichste nicht effizient berechnet werden kann. Die Ubergabe von n 1 an B
gewahrleistet, dass B in n polynomielle Laufzeit haben kann. Dies ist ein typischer tech-
nischer Trick. Das Ziel ist es nun die Aquivalenz der Begriffe des Pseudozufallsgenerators
und der Unvorhersehrbarkeit zu beweisen.

Lemma 4 (Yao) Sei (G, /) ein PZG, dann existieren fiir alle A € PPT ein B € PPT,
so dass fiir alle n € N und € > 0 aus Pr [A(G(U,))] — Pr [A(Uyn))] > ¢, folgt

Pr [B(1",y1,...,yi-1) = vyi] > 1/2+€/l(n).
IER{Ovl}n
y=G(z)
i€R[l(n)]

BEWEIS
Seien A € PPT, e> 0, n € Nund £ :={(n) und es gelte

Pr[A(G(Un))] = Pr[A(U] = ¢,

das heisst A gibt eher bei 'Pseudozufallszahlen’ eine 1 aus. Es ist nun ein B € PPT zu
konstruieren.

Algorithmus B:

Eingabe: 17, i € [{(n)] und y1,...,y;—1 € B.

Vorgehen: Wahle z;,. .., 24, €r B und berechne
a=AY1, - Y1, Zir - Za(n))-

Falls a = 1 ist, dann gebe z; aus, sonst 1 — z;. B fragt also quasi A ob er z; richtig geraten
hat.

Analyse von B: Setze fiiri =0,...,/¢
D =A{v1,. - YisZiz1,-- 2z |z Er B, j=i+1,... Lz g B", y = G(z)}

als Verteilungen welche die ersten ¢ Bits von y € im G festlassen. Zum Beispiel ist Dy = U,
und D, = G(U,). Mit p; :==Pr [A(D;) = 1] fir i =0, ...,/ gilt:

e < Pr[A(Dy)] — Pr[A(Dy)] =ps —po= Y (pj — Pj—1)

j=1

12



und damit

[pi — pi-1] > 7 (2)

i€ [l

B sagt y; korrekt voraus wenn entweder a = 1 und y; = 2; oder a # 1 und y; = 1 — z; ist.
Damit ist die Wahrscheinlichkeit einer richtigen Antwort gleich

Pr [B(1",y1,...,yi1) =y = (Pr[azl | zi:yi]—i—Pr[a#Hyi:l—zi])

8
m
eyl
&
3
N —

(3)
Wenn z; = y; ist, dann ist es als ob B A mit der Verteilung D; aufgerufen hitte. Stellt
man keine Bedingung an z;, dann ist der Aufruf dquivalent zu D;_;. Damit lisst sich
schreiben

pi-1 = Prla=1]
:%(Pr[azl|Zi=yi]+Pr[a:1|Z":1_yi]>
:%(pl-—l—Pr[a:l’Zi:l_yi])

und damit wird 3 zu

1 1
5(]%—1‘1—131'[@:”%:1—2@']) :i(pi+1+pi—2pi—1)21/24‘(1?2‘—]9@—1)

fiir i € [¢]. Man erhélt durch Bilden des Erwartungswertes iiber die Wahlen von i €p [/]
dann mit 2

Pr [B(1n7y17"'7yi71>:yi] = E Pr [B(1n7y17"'7yi*1) :yz]

xERB" i rERB"
y=O(a) D P
i€R[{]
> E [1/2+ (pi — pi-1)]
€[4
> 1/2+ ¢/l -

Die Form der Argumentation in der von D; ; auf D; und insgesamt von D, auf D,
geschlossen wurde, heisst Hybridargument.

Satz 6 (G PZG < unvorhersehbar).
Seien G : B* — B* und ¢/ : N — N in Polynomialzeit berechenbar und G habe die
Dehnung ¢. Dann ist (G, /) ein PZG genau dann wenn G unvorhersehbar ist.

BEWEIS
"=": Angenommen (G, () ist PZG und n € N. Wenn y = (y1,...,Yem)) €Er B zufillig
gleichverteilt gewahlt wurde, kann kein Bit vorhergesagt werden. Ist G vorhersehbar, dann

13



kann y = G(x) von y € B™ unterschieden werden. Damit ist G kein PZG.
"«<=": Angenommen (G, () ist kein PZG. Dann existiert ein A € PPT mit

Pr [A(G(UL)] — Pr [A(Uw)] = 0~

fiir eine Konstante ¢ und oo-vielen n. Die Betragsstriche in der Definition vom Pseu-
dozufallsgenerator lassen sich ggf. durch Ubergang von A zu 1 — A entfernen. Mit dem
Lemma von Yao gibt es fiir solche n ein B € PPT welches mit Wahrscheinlichkeit
> 1/2 4+ n=¢/l(n) ein Bit vorhersagen kann. Da n~¢/¢(n) nicht vernachlissigbar ist fiir
grofse n folgt, dass G vorhersehbar ist. ]

Satz 7.
Existiert eine Einwegpermutation, dann existiert ein PZG G mit Dehnung n + 1.

BEWEIS

G(z,r) := f(x),r,z'r ist ein Pseudozufallsgenerator mit Dehnung 2n + 1. Denn G ist
unvorhersehbar: die ersten 2n Bits von G(Us,) sind zuféllig unabhéngig voneinander und
das 2n + 1 Bit kann wegen des Goldreich-Levin-Theorems nicht zuverlissig vorhergesagt
werden. ]

Satz 8.
Seien ay,...,a, € [0,1] und > a;/n = p der Durchschnitt. Dann gilt fiir mindestens p/2
der a;, dass sie grofer gleich p/2 sind.

BEWEIS
Sei 7 der Anteil der ¢ mit a; > p/2. Dann gilt:

Satz 9 (Goldreich-Levin Theorem).
Sei f: B* — B* eine Einwegpermutation. Dann gibt es fiir alle A € PPT ein vernach-
lassigbares € mit

(fla),r)=a'-r Z <1/2+ e(n)
TER =

14



BEWEIS
Angenommen es gibt A € PPT, e >0 und n € N mit

xGR%" (f(x),r)=2a"-r ler >1/2+¢
TER n 1=

Im folgendem wird die Einwegpermutation mit Hilfe von A invertiert.

Mindestens €/2 - 2" der x € B" erfiillen A(f(x),r) = x'r mit einer Wahrscheinlichkeit
(nach Wahl von r und festem x) > 1/2 + ¢/2. Dies gilt wegen Satz 8. Diese z heifien gut
und sie werden zur Umkehrung der Einwegpermutation genutzt.

Es ist quasi eine schwarze Box gegeben, die x +— z'r fiir 1/2 + ¢/2 der Eingaben r
berechnet. Daraus soll in polynomieller Zeit (in |x| und 1/¢) x rekonstruiert werden.

Wenn Pr,c g [A(f(z),r) = 2'r] = 1, dann gilt
A(f(z),e") = '’ = x;
fiir = 1,...,n und damit kann z effizient bestimmt werden.
Sei nun die Wahrscheinlichkeit, dass A(f(x),r) = a'r bei 3 fiir einen Q(e) Anteil der .
Es gilt
Pr [A(f(z)),r) #2'rV A(f(z),rde’) #a'(rde)]

<Pr[A(f(x),r) # 2] + Pr [A(f(z).r @ ') # 2'(r & ¢')]
<2
—10

Und es gilt mit einer Wahrscheinlichkeit von > &
A(f(z),r) @ A(f(z),r@e) =a'r @ a'(r@e') = a'e’ = a;

Dies lésst sich iiber eine Majoritdtswahl noch weiter verbessern:

Algorithmus B:

1. Wihle 71, ... r™ aus Ugn.

2. Fiiralle i = 1,..., n: Rate x; nach der Majoritét in (A(f(x), r?)DA(f(z), 77 ®e"))1<j<m.

Behauptung: Fiir m = 200n wird fiir alle ¢ € [n] B x; mit einer Wahrscheinlichkeit von

mindestens 1 — ﬁ richtig erraten und damit x mit einer Wahrscheinlichkeit von > 19—0

korrekt berechnet. Definiere fiir festes i € [n]:

7, {0, A(f(x)),7) # 2t V A(f(z),r @ ¢

1, sonst

fir j = 1,...,m. Die Z; sind unabhéngig und es wurde gezeigt E [Z;] > %. Setze

Z =3 ", Zj. Z zéhlt die Anzahl der falschen Berechnungen und es gilt E [Z] > 0.8m
wegen der Linearitit des Erwartungswertes. Ferner ist Var(Z) = 3°7", Var(Z;) < m
und damit mit Tschebyschow

3 Var|Z 9 9 1
pr|z-g(7)> 20| < YA o 9 _ -
10 (?1_%1) 100m 100 - 200n 10n
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Wenn |Z — E [Z]| > 3% ist, heisst dies nichts anderes als Z < m/2. In dem Fall wird
die Mehrheitswahl ein falsches z; wihlen. Insgesamt bedeutet dies, dass B mit einer
Wahrscheinlichkeit von > 0.9 richtig raten wird.

Dieser Beweis scheitert bei der Abschétzung von E [Z;] wenn die Erfolgswahrscheinlich-
keit von A unter 3/4 sinkt. Es kann nur garantiert werden, dass fiir gute = die Wahr-
scheinlichkeit besser als 1/2 + ¢/2 ist - dies konnte kleiner als 3/4 sein. Selbst wenn die
r® nur paarweise unabhiingig sind gilt noch

> 7
J

dies kann dazu benutzt werden den allgemein Fall zu zeigen.

Var

= ZVar[Zj]

1

Wie kann 7', ... r™ gewihlt werden, so dass dies ausgenutzt wird? Sei k (minimal) mit

m <2k _—1:
1. Wihle s', ..., s* ¢z B".
2. Wihle Ty, ..., T, C [k] nichtleer und paarweise verschieden. Setze
Vo [T
teT)

2

Es kann gezeigt werden, dass die r; paarweise unabhéngig sind. Fiir x € B" gilt

zhord = E DAY

€T;

Das heisst aus z's!, ..., 2's* lassen sich 2'r! ... z!™ berechnen. Da 2F = O(m) kann
man alle moglichen Werte fiir z's', ..., 2's* in polynomieller Zeit durchtesten. Genauer:
Algorithmus B’

Eingabe: y € B" mit y = f(x) fiir ein unbekanntes z. Dabei sind nur die Fille interessant,
wo T gut ist.

Sei m = 200% und & minimal mit m < 2k — 1. Wahle s',...,s* €x B* und definiere
7, ...,r™ wie oben. Fiir alle w € B": Starte B mit der Annahme z ® s/ = w; fiir alle
j € [k]. Wenn z = xq,...,z, f(x) =y erfiillt, dann halten und z ausgeben.

Die Analyse geht wie vorher auch nur dass der Fall abgewartet werden muss, wo z ® s/
richtig geraten wird. n

Satz 10 (PZGs mit polynomieller Dehnung).
Sei f eine Einwegpermutation, ¢ € N und z,r € B", setze:

G(x,r):=r, f@) -r, ) -r..., f{z)-r

mit [ = n° Dann ist G ein PZG mit Dehnung [(2n) = n + n°.
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BEWEIS
Wir fiihren einen Widerspruch zur Unvorhersehbarkeit des PZG. Sei also A € PPT, so
dass fiir x,r €g B" und i € [N] gilt:

Pr[A(r, f(x)' v, 7N @) ) = fia)' 1] > - +e

DN | —

Es wird nun ein B € PPT konstruiert, welches !-r aus f(z) und r mit Wahrscheinlichkeit
> 1/2 + € berechnet im Widerspruch zum Goldreich-Levin-Theorem. B bekommt die
Eingabe y := f(x) und r, wihlt i € [N] und berechnet f(y),..., f"*(y) und gibt

a=A(ry r f@) r TN Y) )

aus.

Da f eine Permutation ist, ist es die gleiche Verteilung als wenn wir 2’ €z B" und
x = f'(z') wihlen. A sieht f*(z’)"-r mit Wahrscheinlichkeit > 1/2 + ¢ vorraus und damit
B auch ! - r. B triagt einfach das Problem an A heran und bringt es in das Format von
A. Damit kann B mit nicht vernachlissigbarer Abweichung von 1/2 im Widerspruch zum
Goldreich-Levin-Theorem ! - r berechnen. m

V Zero-Knowledge Beweise

In mathematischen Beweisen von Aussagen wird mehr Information preisgegeben als nur
die Wahrheit der bewiesenen Aussage. Es gibt Félle in denen diese Preisgabe an zusétzli-
chen Informationen nicht gewollt ist, dies fiihrt zum Begriff der Zero-Knowledge Beweise.
Modelliert wird dies mit einer Interaktion zwischen einem Beweiser P (fiir Prover) und
Verifizier V.

Zur Authentizifizerung ist es interessant, die zur Authentifikation notigen Informationen
nicht preiszugeben, denn diese konnte abgefangen und z. B. wiedergegeben werden zur
filschlichen Authentifikation (Replay-Attacke). Bei einem Zero-Knowledge Beweis zur
Authentifikation gibt es dieses Problem nicht mehr. Mathematisch definiert:

Definition 9 (Zero-Knowledge Beweise).
Sei L € NP und M eine Turingmaschine, die in Polynomialzeit 1auft, mit

€L e Jue {0,130 M(x h) =1. (p Polynom)

M entscheidet also L mit Hilfe eines Zeugen u.

Ein Paar (P,V) von interaktiven Polynomialzeitalgorithmen heifst Zero-Knowledge Be-
weis fiir L, falls die folgenden Eigenschaften erfiillt sind: Vollstéindigkeit (Completen-
ess): Fiir jedes © € L und Zertifikat u = u(z) gilt

Pr [outy (P(z,),V(z))] >

Wl o

Wobei (P(z,u),V(x)) die Interaktion zwischen P und V mit den gegebenen Eingaben
bezeichnet und outy I beschreibt die Ausgabe von V' am FEnde der Interaktion I.
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Zuverlissigkeit (Soundness): Wenn z ¢ L, dann gilt fiir jede Strategie P* und Eingabe
u, dass

Pr [outy (P*(z,u), V(x))] <

Wl =

dabei ist P* in keiner Weise beschrinkt.

Perfect-Zero-Knowledge-Eigenschaft: Fiir alle Verifizierstrategien V* € PPT exis-
tiert ein S* mit erwarteter probabilistischer Polynomiallaufzeit, so dass fiir alle x € L
und u Zeuge dafiir gilt:

outy(P(z,u), V*(z)) = S*(z)

Die Gleichheit bezieht sich auf die Gleichheit der Verteilungen. S* simuliert V*.

Die letzte Eigenschaft gewéahrleistet, dass kein Verfizier Informationen erlangt, die er eh
schon haben kénnte z. B. durch Ausfithren vom Simulator S*.

Beispiel (Zero-Knowledge Beweis fiir Graphenisomorphie (GI)):
Das Entscheidungsproblem der Graphenisomorphie ist es fiir Graphen G, und Gy zu
entscheiden, ob Gy = Gy, d. h. ob es eine Bijektion ® : V(Gy) — V(G;) gibt, so dass

vw € E(Gy) & ®(v)®(w) € E(Gy)

oder anders formuliert, ob V(Gy) = V(G1) und ob eine Permutation (0. E. V(Gy) = [n])
7 @ [n] — [n]| existiert, sodass Gy = w(Gy) gilt. Hierfiir existiert ein Zero-Knowledge
Beweis mit der Interaktion:

Fingabe: Graphen Gy, G mit V(G;) = [n] in Adjazenzmatrixform gegeben.

FEingabe von P: 7 : [n] — [n| mit G; = 7(Gy).

Interaktion: P wahlt Permutation m €g S, und sendet V' die Adjazenzmatrix von 71 (G1)
dieser Graph soll H heifen (dies wird inbesondere dann wichtig, wenn P kein Isomor-
phismus kennt). V' wihlt ein b € {0,1} zufillig und schickt es zu P. Nun antwortet P
mit m; falls b = 1 und sonst mit 7 o w. Diese Antwort sei mit ™ bezeichnet.

Jetzt akzeptiert V' genau dann wenn m(G;) = 7(G,). Als Bild

Gy — G,

™1
T10T

’/T1<G1)

Vollstandigkeit: Halten beide Parteien sich an das Protokoll, dann akzeptiert der Veri-
fizier das Ergebnis mit Wahrscheinlichkeit 1.

Zuverlassigkeit: Wenn Gy 2 G4, dann wird der Verfizierer mit einer Wahrscheinlichkeit
von > 1/2 ablehnen. Denn ein G, wird nicht isomorph zu H sein.
Perfect-Zero-Knowledge-Eigenschaft: Sei V* ein Verifizierer und S* der folgende
Simulator:

Bei Eingabe von zwei Graphen Gy, G S* wihlt ein b’ € B und eine zufillige Permutation
T € S und berechnet H = 7(Gy). S* sendet dann H an den Verifizier und erhélt b € B

18



zuriick. Wenn b = b’ dann sendet S* 7 and V* und gibt aus, was V* ausgibt. Wenn b # ¢’
dann startet S* einen neuen Anlauf.

Die erste Nachricht von S* ist identisch verteilt zu der von P: Beide verschicken einen
zufilligen, zu G7 (und Gy) isomorphen Graphen. Wenn o' = b, dann sieht V* die gleiche
Interaktion wie in einer richtigen Interaktion mit P. Die Wahrscheinlichkeit davon ist
1/2 also ist die Wahrscheinlichkeit, dass k¥ Runden gebraucht werden 27%. Damit ist die

erwartete Laufzeit
T(n)Y 27" =0O(T(n))

k>1

mit T'(n) Laufzeit von V*.
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