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I Einführung

Die Kryptographie ist eine uralte Wissenschaft, die sich aus dem Bedürfnis heraus ent-
wickelt, Kommunikation gegen Unbefugte zu schützen, also seine Daten zu sichern. In
dieser Arbeit werden grundlegende Fragen der Kryptographie beantwortet: Wann ist ein
Kryptographiesystem sicher? Was ist Pseudozufall und Einwegfunktionen? Was haben
diese mit der Kryptographie zu tun?

Gelöst werden sollen von der Kryptographie unter anderem folgende Problemstellungen

1. Datensicherheit Schutz vor unbefugtem Lesen von Daten.

2. Datenintegrität Schutz vor ungewollter Modi�kation der Daten.

3. Authenti�kation Nachweis einer Identität in dem man

(a) Etwas weiÿ

(b) oder etwas besitzt

(c) oder etwas ist.

Als grundlegendes mathematisches Objekt betrachten wir Kryptosysteme, die formale
De�nition:

De�nition 1 (Kryptosystem).
Ein Paar (Enc,Dec) von Funktionen

Enc : K ×M→ C, (k, x) 7→ Enck(x)

und
Dec : K × C →M, (k, y) 7→ DecK(y)

mit den MengenM, C,K (Klartext-,Chi�retext- und Schlüsselmenge) heiÿt Kryp-
tosystem, wenn zusätzlich die Bedingung gilt

Deck ◦ Enck = IdM (∀k ∈ K)

Im ersten Teil wird die von Shannon eingeführte perfekte Geheimhaltung in Shannon
(1949) dargestellt. Hier wird mit Hilfe der Informationstheorie versucht Sicherheit eines
Kryptosystems zu de�nieren. Das Hauptergebnis dieses Paragraphen ist, dass das One-
Time-Pad diese De�nition erfüllt und dabei minimale Schlüssellänge besitzt - diese ist
jedoch immer noch so lang wie der Nachrichtentext.

Im zweiten Paragraphen wird mit Hilfe der Komplexitätstheorie versucht Sicherheit eines
Kryptosystems zu beschreiben. Dabei werden die Forderungen gelockert um e�zientere
Kryptosysteme zu ermöglichen. Es werden Einwegfunktionen und die Rolle der P = NP
Frage für die Kryptographie erörtert. Zwei Beispiele für vermutete Einwegfunktionen -
RSA und die Rabinfunktion - werden gezeigt.
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Der dritte Paragraph diskutiert den Pseudozufall und seine Rolle für die Kryptographie.
Dabei werden die für die Kryptographie wichtigen Pseudozufallsgeneratoren eingeführt
und bewiesen, dass aus der Existenz von Einwegfunktionen sich Pseudozufallsgeneratoren
konstruieren lassen. Unter anderem wird dafür das Lemma von Yao und das Goldreich-
Levin-Theorem bewiesen. Schliesslich wird der Beweis für eine Abschwächung des Satzes
gegeben: Aus Einwegpermutationen lassen sich Pseudozufallsgeneratoren konstruieren.

Schliesslich werden im vierten Teil Zero-Knowledge Beweise geführt. Diese Systeme er-
möglichen es Aussagen zu beweisen ohne Informationen preiszugeben, die ein polynomi-
eller Algorithmus eh hätte ermitteln können.

II Perfekte Geheimhaltung

De�nition 2.
Ein Kryptosystem (Enc,Dec) über Bn bietet perfekte Geheimhaltung, falls für jede
Verteilung D von Nachrichten, jeder Nachricht m und jeden auftretenden Chi�retext c
gilt

Pr [M = x | C = c] = Pr [M = x]

Das heisst unter der Kenntnis eines beliebigen Chi�retextes erhalten wir keine Infor-
mationen über den Klartext im wahrscheinlichkeitstheoretischen Sinne. Äquivalent dazu
ist, dass die Verteilung der Klartexte unabhängig von der der Chi�retexte ist. D. h.
EncUn(x) = EncUn(x′)

Lemma 1 Für ein Kryptosystem Π = (Enc,Dec) sind die folgenden Aussagen äquiva-
lent

1. Π bietet perfekte Geheimhaltung.

2. Für jede Verteilung aufM und allen x ∈M, y ∈ C gilt:

Pr [C = y |M = x] = Pr [C = y] .

3. Für jede Verteilung aufM und allen x0, x1 ∈M und c ∈ C gilt

Pr [C = y |M = x0] = Pr [C = y |M = x1]

Beweis

1.⇔ 2.: Einfache Umformung und Bayes.
1., 2.⇔ 3.:
'⇒': Folgt direkt aus 2..
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'⇐': Sei eine beliebige Verteilung auf M und x0 ∈ M und y ∈ C gewählt. De�niere
p := Pr [C = y |M = m0]. Dann gilt

Pr [C = y] =
∑
x∈M

Pr [C = y |M = x] ·Pr [M = x]

=
∑
x∈M

pPr [M = x]

= p

= Pr [C = y |M = x0]

Lemma 2 Ein Kryptosystem (Enc,Dec) mit Klartextmenge M und Schlüsselmenge
K bietet perfekte Geheimhaltung, dann gilt

|K| ≥ |M|

Beweis

Annahme: |K| < |M|. Sei M gleichverteilt und y ∈ C ein Chi�retext, der auftritt. De�-
niere

M(c) := {x | x = Deck(y), k ∈ K}

Es gilt |M(y)| ≤ |K| da wir jedem Element in M(c) ein Schlüssel zuordnen können. Da
|K| < |M| existiert ein x ∈M\M(y) für das gilt

Pr [M = x | C = y] = 0 < Pr [M = x]

im Widerspruch zur perfekten Geheimhaltung.

Shannon lieferte auch eine Charakterisierung für Kryptosysteme mit perfekter Geheim-
haltung

Satz 1 (von Shannon).
Sei (Enc,Dec) ein Kryptosystem mit |K| = |M| = |C|. Dann bietet das Kryptosysteme
perfekte Geheimhaltung genau dann wenn folgende Bedingungen gelten:

1. Die Schlüssel werden gleichverteilt gewählt, d. h. K ∼ UK.

2. Für alle Nachrichten x ∈M und Chi�retexten y ∈ C existiert genau ein k ∈ K mit
y = Enck(x).

5



Beweis

'⇒': Sei (Enc,Dec) mit perfekter Geheimhaltung. Für alle x ∈ M und y ∈ C muss ein
k ∈ K existieren, sodass y = Enck(x). Für ein festes x ∈ M1 gilt also für die Menge
E(x) := {Enck(x)}k∈K, dass |E(x)| ≥ |C| und damit |E(x)| = |C| = |K|. Damit ist
Enc(·, x) injektiv, also existiert maximal ein Schlüssel um x 7→ y für alle y ∈ C. Variation
von x ∈M und die Existenz eines Schlüssels geben die zweite Aussage.

Nun sei k ∈ K und das Ziel ist es Pr [K = k] = 1
n
mit n := |K| zu zeigen. Sei M =

{x1, . . . , xn} und y ∈ C fest. Sei k1, . . . , kn ∈ K, sodass

Encki(xi) = y (1 ≤ i ≤ n)

Nun gilt wegen der perfekten Geheimhaltung für beliebige i = 1, . . . , n:

Pr [M = xi] = Pr [M = xi | C = y]

=
Pr [C = y |M = xi] ·Pr [M = xi]

Pr [C = y]

=
Pr [K = ki] ·Pr [M = xi]

Pr [C = y]

⇔ Pr [C = y] = Pr [K = ki]

⇒ K ∼ Un.
'⇐': Es folgt direkt

Pr [C = y |M = x] =
1

|K|
unabhängig von der Verteilung aufM. Also haben wir für alle Verteilungen aufM, allen
x, x′ ∈M und jedem y ∈ C:

Pr [C = y |M = x] =
1

|K|
= Pr [C = y |M = x′]

so dass unser Kryptosystem perfekte Geheimhaltung bietet.

Und ein Kryptosystem welches perfekte Geheimhaltung bietet ist:

De�nition 3 (One-Time-Pad).
Seien K =M = C = {0, 1}n für ein n ∈ N. Dann heisst (Enc,Dec)

Enck(x) := x⊕ k, Deck(y) := y ⊕ k

One-Time-Pad (Vernam Chi�re).

Der Satz von Shannon zeigt, dass das One-Time-Pad perfekte Geheimhaltung bietet.

1Welches auftritt, aber diese Annahme machen wir immer.
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III Berechnungssicherheit

Zuerst noch ein Ergebnis, welches uns ein Strich durch sichere Kryptographie macht.

Lemma 3 Sei P = NP und (Enc,Dec) in Polynomialzeit berechenbar mit einer
Schlüssellänge von n = n(m) < m bei Nachrichtenlänge m. Dann existiert ein Po-
lynomialzeitalgorithmus A, so dass für alle Eingabelängen m gilt: es gibt es ein Paar
x0, x1 ∈ {0, 1}m mit

Pr
b∈R{0,1}
k∈R{0,1}

[A(Enck(xb)) = b] ≥ 3

4

Beweis

Sei (Enc,Dec) mit m ∈ N und n = n(m) < m fest. De�niere S := EncUn(x0) mit
x0 := 0m. Da P = NP ist gibt es polynomiellen Algorithmus A der S entscheidet. Das
heisst A(y) ist gleich [y ∈ S].

Es fehlt nun noch ein geeignetes x1 ∈ Bm. Sei dazu Dx ∼ EncUn(x) die Verteilung der
Verschlüsselungen von x ∈ Bm. Per Konstruktion ist dann

Pr [A(Dx0) = 0] = 1.

Ferner gilt

Pr
b∈RB

[A(Dxb) = b] =
1∑
b=0

Pr [b]Pr [A(Dxb) = b]

=
1

2
+

1

2
Pr [A(Dx1) = 1]

sodass wenn x1 die Ungleichung Pr [A(Dx1) = 1] ≥ 1
2
erfüllt der Beweis vollbracht ist.

Dies ist aber zu

Pr [Dx1 ∈ S] ≤ 1

2

äquivalent. Für x ∈ Bm und k ∈ Bn sei die Zufallsvariable S(x, k) de�niert als:

S(x, k) :=

{
1, Ek(x) ∈ S
0, sonst

Zum Zwecke eines Widerspruchsbeweises Pr [Dx1 ∈ S]] > 1
2
für alle x1 ∈ Bm. Daraus

folgt eine Abschätzung für den Erwartungswert von S(x, k):

E
x∈Bn

k∈Bm

[S(x, k)] >
1

2
(1)

Nun gilt für einen festen Schlüssel k, dass die Funktion Ek(·) : x 7→ Enck(x) wegen
Dec ◦ Enc = Id injektiv sein muss. Nun gilt die Ungleichungskette

|S| ≤ 2n ≤ 2m−1 < | imEk(·)| = 2m
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woraus folgt

E
x∈Bn

[S(x, k)] ≤ 1

2

und damit im Widerspruch zu (1) folgt

1

2
< E

x,k
[S(x, k)] ≤ E

k

[
1

2

]
=

1

2

De�nition 4 (Vernachlässigbare Funktionen).
Sei ε : N → [0, 1] ⊆ R, dann heisst ε vernachlässigbar, wenn ε(n) = n−ω(1). D. h. für
alle c > 0 existiert ein N ∈ N, sodass ε(n) < n−c für alle n ≥ N gilt.

Es gilt
lim
n→∞

ε(n) = 0

und dieser Ausdruck konvergiert so schnell, dass man es in praktischen gelangen ver-
nachlässigen kann. Mit vernachlässigbaren Funktionen wollen wir Ereignisse modellieren,
welche praktisch nie eintreten.

De�nition 5 (Einwegfunktionen).
Eine in Polynomialzeit berechenbare Funktion f : B∗ → B∗ heiÿt Einwegfunktion, falls
für alle A ∈ PPT gilt:

Pr
x∈Bn

y=f(x)

[A(y) = x′ mit f(x′) = y]

ist vernachlässigbar in n ∈ N.
Gilt |f(x)| = |x| für x ∈ B∗, so heisst f längenerhaltend. Ist f eine injektive , länge-
nerhaltende Einwegfunktion, dann heisst f Einwegpermutation.

Vermutung: Es existiert eine Einwegfunktion.

Satz 2.
Wenn P = NP , dann existieren keine Einwegfunktionen.

Beispiel (Faktorisierung):
Betrachtet man die Multiplikation a · b =: N zweier Zahlen a, b ∈ N, so ist die Umkeh-
rung im gewissen Sinne die Faktorisierung einer Zahl in ihren Primfaktoren. Der naive
Algorithmus, die Probedivision von Teilern bis

√
N ist exponentiell in der Eingabegröÿe

log(N). Es gibt einen Faktorisierungsalgorithmus (siehe (Lenstra u. a., 1990)) mit einer
oberen Laufzeitschranke von 2O(log

1/3N
√
log logN).

8



Das nächste Beispiel benötigt die eulersche ϕ-Funktion für diese gilt

ϕ(n) := |{1 ≤ j < n | ggT(j, n) = 1}| =
∣∣∣(Z�nZ)∗∣∣∣

Beispiel (RSA):
Für ein n ∈ N sei N = N(n) ∈ N eine zusammengesetzte Zahl und e ∈ N mit
ggT(ϕ(n), e) = 1. Im Regelfall ist N das Produkt zweier verschiedener Primzahlen

p, q 6= 2. Es ist dann für x ∈
(
Z�N Z

)∗
:

Enc(N,e)(x) = RSA(N,e)(x) = ρN(xe)

die Chi�rierungsfunktion vomRSA-Kryptosystemmit ρN : Z� Z�N Z der Reduktion
modulo N . Dechi�riert werden kann ein Chi�retext y mit einem geheim gehaltenen d,
welches die Gleichung

ed ≡ 1 mod ϕ(N)

erfüllt und zwar mit
Dec(N,e)(y) = ρN(yd)

Kennt man den Wert von ϕ(N), so lässt sich d e�zient mit dem euklidischen Algorith-
mus bestimmen. Es lässt sich ϕ(N) e�zient unter Kenntniss der Primfaktorzerlegung
berechnen. Im allgemeinen Fall gilt für n =

∏r
i=1 p

νi
i mit verschiedenen Primzahlen pi:

ϕ(n) =
r∏
i=1

pνi−1i (pi − 1)

wie man z. B. mit dem Inklusion-Exklusionsprinzip zeigen kann.

Beispiel (Rabin):
Sei N = PQ wieder das Produkt zweier verschiedener Primzahlen gröÿer 2. Zusätzlich
gelte P,Q ≡ 3 mod 4. Wir betrachten die Menge der quadratischen Reste

QRN := {z ∈ Z∗N | ∃y ∈ Z∗n : y2 = z}

wobei Zn := Z�nZ für n ∈ N. Das Verschlüsseln ist nun das quadrieren einer Zahl
mod N . Die Dechi�rierung ist das Quadratwurzel ziehen in ZN . Da der Empfänger die
Faktorisierung von N kennt, kann er mit Hilfe des chinesischen Restsatzes das Problem
auf die simultane Quadratwurzelbestimmung in ZP und ZQ reduzieren. Wegen P,Q ≡ 3
mod 4 gilt aber:

z(P+1)/4 =
√
z mod P

und analog für Q. Mit Hilfe des schnellen Exponentierens lässt sich so die Quadratwurzel
e�zient bestimmen.
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De�nition 6 (Levins universelle Einwegfunktion).
Es ist fU Levins universelle Einwegfunktion wie folgt de�niert:

Die Eingabe wird geeignet zerteilt: x = x1 · · · xlogn (n := |x|) mit |xi| = n
logn

für i =

1, . . . , log n. Sei (Mi)i∈N eine Abzählung aller Turingmaschinen. Dann gilt

fU(x) = Mn2

1 (x1) · · ·Mn2

logn(xlogn)

wobei

M t
i (x) =

{
Mi(x), Mi terminiert nach ≤ t Schritten.

0|x|, sonst

Satz 3.
Falls es eine Einwegfunktion gibt, dann ist fU eine Einwegfunktion.

Beweis

Falls eine Einwegfunktion f : B∗ → B∗ existiert, dann existiert auch eine Einwegfunktion
g mit Laufzeit n2 für groÿe n. Denn sei p(n) ein Polynom, welches die Laufzeit von f be-
schränkt, dann kann eine neue Funktion g de�niert werden, welche die ersten dn2/p(n)en
vielen Bits der Eingabe auf f ausführt. Angenommen g ist keine Einwegfunktion, dann
kann auch f durch Au�üllen von Bits in der Eingabe (der Teil der verworfen wird) e�-
zient (Polynome sind unter Komposition abgeschlossen) invertiert werden.
Sei i0 so dass Mi0 so ein g berechnet. Das heisst Einwegfunktion und n2 Laufzeit. Be-
trachte genügend groÿe n, sodass i0 < dlog ne (dann wird die Eingabe nicht aufgefüllt)
und das invertieren von Mi0 wird von jedem A ∈ PPT mit in n/ log n vernachlässigbarer
Wahrscheinlichkeit gefunden. Wegen

n/ log n < n−c ⇔ n < n−c log n < n−c−ε

für alle c > 0 und geeignetem ε > 0, sodass −c − ε > 0 für alle n ≥ N mit geeignetem
N .

Auf Einwegfunktionen lässt sich 'berechnungssichere' Kryptographie aufbauen, es gilt:

Satz 4.
Wenn Einwegfunktionen existieren, dann gibt es ein c ∈ N, sodass es ein berechnungssi-
cheres Kryptosystem (Enc,Dec) gibt, welches eine Schlüssellänge von n und Nachrich-
tenlänge von nc hat.

Berechnungssicherheit bedeutet für ein Kryptosystem (Enc,Dec) mit Schlüssellänge
n und Eingabelänge m, dass wir für alle A ∈ PPT eine vernachlässigebare Funktion ε
haben, so dass (xi bezeichne das i-te Bit von der Nachricht x):

Pr
k∈R{0,1}n
x∈R{0,1}m

[A(Ek(x)) = (i, b) s. d. xi = b] ≥ 1

2
+ ε(n)

gilt. Das heisst über kein Bit der Nachricht x kann ein Angreifer mit nicht vernachlässig-
barer Wahrscheinlichkeit Informationen in Polynomialzeit errechnen.
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IV Pseudozufall

Um sichere Kryptosysteme konstruieren zu können, benötigt man bei der Schlüsselwahl
den Zufall. Beim One-Time-Pad ist der Schlüssel so lang wie der Klartext - eine praktisch
nicht immer günstige Lösung. Eine Idee ist es aus einem kleinen Schlüssel einen Strom an
Pseudozufallszahlen zu erzeugen und dieses als Pad für das One-Time-Pad zu benutzen.
Der Vorteil in dieser Konstruktion besteh darin, dass man einen viel kürzeren Schlüssel
als beim One-Time-Pad benötigt. Um diese Pseudozufallszahlen zu erzeugen benutzt
man Pseudozufallsgeneratoren, -Funktionen und -Permutationen. Diese Begri�e werden
in diesem Abschnitt eingeführt und untersucht.

Was ist nun Zufall? Kolmogorow de�niert eine Zeichenkette der Länge n als zufällig,
wenn keine Turingmaschine mit einer Codierungslänge von < 99

100
n die Zeichenkette n bei

einer leeren Eingabe ausgibt. Dies führt zum Begri� der Kolmogorow-Komplexität.
Leider ist die Frage i. A. unentscheidbar, daher für die Zwecke der Kryptographie unge-
eignet.

Ein alternativer Ansatz stamm aus der Statistik. Dort müssen zufälligen Zeichenketten
bzw. deren Teilmuster die Gesetze der Statistik genügen. Jedoch existiert eine Verteilung
die diese De�nition erfüllt, aber für Zwecke der Kryptographie ungeeignet ist.

Die De�nition von Pseudozufall die der heutigen Kryptographie genügt ist: Eine Vertei-
lung ist pseudozufällig, wenn sie nicht e�zient vom wahren Zufall zuverlässig unterscheid-
bar ist. Genauer:

De�nition 7 (Pseudozufallsgenerator (PZG)).
Seien G : B∗ → B∗, ` : N → N in Polynomialzeit berechenbar und gelte `(n) > n für alle
n ∈ N. (G, `) heisst Pseudozufallsgenerator (kurz: PZG) mit Dehnung `, wenn gilt
|G(x)| = `(|x|) für alle x ∈ B∗ und für alle A ∈ PPT existiert ein vernachlässigbares ε,
sodass ∣∣∣Pr [A(G(Un)) = 1]−Pr

[
A(U`(n)) = 1

]∣∣∣ < ε(n) (n ∈ N)

gilt.

Häu�g wird im folgendem auch nur G als PZG bezeichnet. Es gilt der bemerkenswerte
Satz:

Satz 5 (Einwegfunktionen ⇒ PZG).
Existiert eine Einwegfunktion, dann existieren für alle Polynome ` mit `(n) > n für n ∈ N
ein PZG (G, `).

Der Beweis �ndet sich im Katz u. Lindell (2008) oder siehe die Originalpublikation Astad
u. a. (1999).

Im folgenden wird ein Lemma von Yao und das Goldreich-Levin-Theorem gezeigt um
daraufhin eine Abschwächung des Satzes zu zeigen: Aus der Existenz von Einwegpermu-
tationen folgt die Existenz von Pseudozufallsgeneratoren. Zuerst wird noch eine Charak-
terisierung für Pseudozufallsgeneratoren eingeführt.
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De�nition 8.
Sei G : B∗ → B∗ mit Dehnung `. G und ` sind in Polynomialzeit berechenbar. G heiÿt
unvorhersehbar, wenn für alle B ∈ PPT gilt:

Pr
x∈rBn

y=G(x)
i∈R[`(n)]

[B(1n, y1, . . . , yi−1) = yi] ≤ 1/2 + ε(n) (n ∈ N)

mit vernachlässigbaren ε.

Anschaulich bedeutet die Unvorhersehbarkeit von G, dass unter Vorlage der ersten i− 1
Bits das nächste nicht e�zient berechnet werden kann. Die Übergabe von n 1 an B
gewährleistet, dass B in n polynomielle Laufzeit haben kann. Dies ist ein typischer tech-
nischer Trick. Das Ziel ist es nun die Äquivalenz der Begri�e des Pseudozufallsgenerators
und der Unvorhersehrbarkeit zu beweisen.

Lemma 4 (Yao) Sei (G, `) ein PZG, dann existieren für alle A ∈ PPT ein B ∈ PPT ,
so dass für alle n ∈ N und ε > 0 aus Pr [A(G(Un))]−Pr

[
A(U`(n))

]
≥ ε, folgt

Pr
x∈R{0,1}n
y=G(x)
i∈R[`(n)]

[B(1n, y1, . . . , yi−1) = yi] ≥ 1/2 + ε/`(n).

Beweis

Seien A ∈ PPT , ε > 0, n ∈ N und ` := `(n) und es gelte

Pr [A(G(Un))]−Pr [A(U`] ≥ ε,

das heisst A gibt eher bei 'Pseudozufallszahlen' eine 1 aus. Es ist nun ein B ∈ PPT zu
konstruieren.

Algorithmus B:
Eingabe: 1n, i ∈ [`(n)] und y1, . . . , yi−1 ∈ B.
Vorgehen: Wähle zi, . . . , z`(n) ∈R B und berechne

a = A(y1, . . . , yi−1, zi, . . . , z`(n)).

Falls a = 1 ist, dann gebe zi aus, sonst 1−zi. B fragt also quasi A ob er zi richtig geraten
hat.

Analyse von B: Setze für i = 0, . . . , `

Di := {y1, . . . , yi, zi+1, . . . , z` | zj ∈R B, j = i+ 1, . . . , `, x ∈R Bn, y = G(x)}

als Verteilungen welche die ersten i Bits von y ∈ imG festlassen. Zum Beispiel ist D0 = U`
und Dl = G(Un). Mit pi := Pr [A(Di) = 1] für i = 0, . . . , ` gilt:

ε ≤ Pr [A(D`)]−Pr [A(D0)] = p` − p0 =
∑̀
j=1

(pj − pj−1)
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und damit
E

i∈R[`]
[pi − pi−1] ≥

ε

`
. (2)

B sagt yi korrekt voraus wenn entweder a = 1 und yi = zi oder a 6= 1 und yi = 1− zi ist.
Damit ist die Wahrscheinlichkeit einer richtigen Antwort gleich

Pr
x∈RBn

y=G(x)

[B(1n, y1, . . . , yi−1) = yi] =
1

2

(
Pr [a = 1 | zi = yi] + Pr [a 6= 1 | yi = 1− zi]

)
(3)

Wenn zi = yi ist, dann ist es als ob B A mit der Verteilung Di aufgerufen hätte. Stellt
man keine Bedingung an zi, dann ist der Aufruf äquivalent zu Di−1. Damit lässt sich
schreiben

pi−1 = Pr [a = 1]

=
1

2

(
Pr [a = 1 | zi = yi] + Pr [a = 1 | zi = 1− yi]

)
=

1

2

(
pi + Pr [a = 1 | zi = 1− yi]

)
und damit wird 3 zu

1

2

(
pi + 1−Pr [a = 1 | yi = 1− zi]

)
=

1

2
(pi + 1 + pi − 2pi−1) = 1/2 + (pi − pi−1)

für i ∈ [`]. Man erhält durch Bilden des Erwartungswertes über die Wahlen von i ∈R [`]
dann mit 2

Pr
x∈RBn

y=G(x)
i∈R[`]

[B(1n, y1, . . . , yi−1) = yi] = E
i∈R[`]

 Pr
x∈RBn

y=G(x)

[B(1n, y1, . . . , yi−1) = yi]


≥ E

i∈[`]
[1/2 + (pi − pi−1)]

≥ 1/2 + ε/`

Die Form der Argumentation in der von Di−1 auf Di und insgesamt von D0 auf Dl
geschlossen wurde, heisst Hybridargument.

Satz 6 (G PZG ⇔ unvorhersehbar).
Seien G : B∗ → B∗ und ` : N → N in Polynomialzeit berechenbar und G habe die
Dehnung `. Dann ist (G, `) ein PZG genau dann wenn G unvorhersehbar ist.

Beweis

"⇒": Angenommen (G, `) ist PZG und n ∈ N. Wenn y = (y1, . . . , y`(n)) ∈R B`(n) zufällig
gleichverteilt gewählt wurde, kann kein Bit vorhergesagt werden. Ist G vorhersehbar, dann
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kann y = G(x) von y ∈R B`(n) unterschieden werden. Damit ist G kein PZG.
"⇐": Angenommen (G, `) ist kein PZG. Dann existiert ein A ∈ PPT mit

Pr [A(G(Un))]−Pr
[
A(U`(n))

]
≥ n−c

für eine Konstante c und ∞-vielen n. Die Betragsstriche in der De�nition vom Pseu-
dozufallsgenerator lassen sich ggf. durch Übergang von A zu 1 − A entfernen. Mit dem
Lemma von Yao gibt es für solche n ein B ∈ PPT welches mit Wahrscheinlichkeit
≥ 1/2 + n−c/`(n) ein Bit vorhersagen kann. Da n−c/`(n) nicht vernachlässigbar ist für
groÿe n folgt, dass G vorhersehbar ist.

Satz 7.
Existiert eine Einwegpermutation, dann existiert ein PZG G mit Dehnung n+ 1.

Beweis

G(x, r) := f(x), r, xtr ist ein Pseudozufallsgenerator mit Dehnung 2n + 1. Denn G ist
unvorhersehbar: die ersten 2n Bits von G(U2n) sind zufällig unabhängig voneinander und
das 2n+ 1 Bit kann wegen des Goldreich-Levin-Theorems nicht zuverlässig vorhergesagt
werden.

Satz 8.
Seien a1, . . . , an ∈ [0, 1] und

∑
ai/n = ρ der Durchschnitt. Dann gilt für mindestens ρ/2

der ai, dass sie gröÿer gleich ρ/2 sind.

Beweis

Sei γ der Anteil der i mit ai ≥ ρ/2. Dann gilt:

ρ ≤ γ · 1 + (1− γ)
ρ

2

≤ γ +
ρ

2
⇒ ρ/2 ≤ γ

Satz 9 (Goldreich-Levin Theorem).
Sei f : B∗ → B∗ eine Einwegpermutation. Dann gibt es für alle A ∈ PPT ein vernach-
lässigbares ε mit

Pr
x∈RBn

r∈RBn

[
A(f(x), r) = xt · r =

n∑
i=1

xiri

]
≤ 1/2 + ε(n)

14



Beweis

Angenommen es gibt A ∈ PPT , ε > 0 und n ∈ N mit

Pr
x∈RBn

r∈RBn

[
A(f(x), r) = xt · r =

n∑
i=1

xiri

]
≥ 1/2 + ε

Im folgendem wird die Einwegpermutation mit Hilfe von A invertiert.

Mindestens ε/2 · 2n der x ∈ Bn erfüllen A(f(x), r) = xtr mit einer Wahrscheinlichkeit
(nach Wahl von r und festem x) ≥ 1/2 + ε/2. Dies gilt wegen Satz 8. Diese x heiÿen gut
und sie werden zur Umkehrung der Einwegpermutation genutzt.

Es ist quasi eine schwarze Box gegeben, die x 7→ xtr für 1/2 + ε/2 der Eingaben r
berechnet. Daraus soll in polynomieller Zeit (in |x| und 1/ε) x rekonstruiert werden.

Wenn Prr∈RBn [A(f(x), r) = xtr] = 1, dann gilt

A(f(x), ei) = xtei = xi

für i = 1, . . . , n und damit kann x e�zient bestimmt werden.

Sei nun die Wahrscheinlichkeit, dass A(f(x), r) = xtr bei 9
10

für einen Ω(ε) Anteil der x.
Es gilt

Pr
r∈RBn

[
A(f(x)), r) 6= xtr ∨ A(f(x), r ⊕ ei) 6= xt(r ⊕ ei)

]
≤Pr

r

[
A(f(x), r) 6= xtr

]
+ Pr

r

[
A(f(x), r ⊕ ei) 6= xt(r ⊕ ei)

]
≤ 2

10

Und es gilt mit einer Wahrscheinlichkeit von ≥ 8
10

A(f(x), r)⊕ A(f(x), r ⊕ ei) = xtr ⊕ xt(r ⊕ ei) = xtei = xi

Dies lässt sich über eine Majoritätswahl noch weiter verbessern:
Algorithmus B:
1. Wähle r1, . . . , rm aus UBn .
2. Für alle i = 1, . . . , n: Rate xi nach der Majorität in (A(f(x), rj)⊕A(f(x), rj⊕ei))1≤j≤m.
Behauptung: Für m = 200n wird für alle i ∈ [n] B xi mit einer Wahrscheinlichkeit von
mindestens 1 − 1

10n
richtig erraten und damit x mit einer Wahrscheinlichkeit von ≥ 9

10

korrekt berechnet. De�niere für festes i ∈ [n]:

Zj =

{
0, A(f(x)), r) 6= xtr ∨ A(f(x), r ⊕ ei

1, sonst

für j = 1, . . . ,m. Die Zj sind unabhängig und es wurde gezeigt E [Zj] ≥ 8
10
. Setze

Z =
∑m

j=1 Zj. Z zählt die Anzahl der falschen Berechnungen und es gilt E [Z] ≥ 0.8m
wegen der Linearität des Erwartungswertes. Ferner ist Var(Z) =

∑m
j=1Var(Zj) ≤ m

und damit mit Tschebyschow

Pr

[
|Z − E [Z] | ≥ 3m

10

]
≤ Var[Z](

3m
10

)2 ≤ 9

100m
=

9

100 · 200n
<

1

10n

15



Wenn |Z − E [Z] | ≥ 3m
10
| ist, heisst dies nichts anderes als Z ≤ m/2. In dem Fall wird

die Mehrheitswahl ein falsches xi wählen. Insgesamt bedeutet dies, dass B mit einer
Wahrscheinlichkeit von > 0.9 richtig raten wird.

Dieser Beweis scheitert bei der Abschätzung von E [Zj] wenn die Erfolgswahrscheinlich-
keit von A unter 3/4 sinkt. Es kann nur garantiert werden, dass für gute x die Wahr-
scheinlichkeit besser als 1/2 + ε/2 ist - dies könnte kleiner als 3/4 sein. Selbst wenn die
ri nur paarweise unabhängig sind gilt noch

Var

[∑
j

Zj

]
=
∑
j

Var[Zj]

dies kann dazu benutzt werden den allgemein Fall zu zeigen.

Wie kann r1, . . . , rm gewählt werden, so dass dies ausgenutzt wird? Sei k (minimal) mit
m ≤ 2k − 1:
1. Wähle s1, . . . , sk ∈R Bn.
2. Wähle T1, . . . , Tm ⊆ [k] nichtleer und paarweise verschieden. Setze

rj =

∑
t∈Tj

st


2

Es kann gezeigt werden, dass die rj paarweise unabhängig sind. Für x ∈ Bn gilt

xt · rj =
∑
i∈Tj

xt · si

Das heisst aus xts1, . . . , xtsk lassen sich xtr1, . . . , xtrm berechnen. Da 2k = O(m) kann
man alle möglichen Werte für xts1, . . . , xtsk in polynomieller Zeit durchtesten. Genauer:
Algorithmus B′:
Eingabe: y ∈ Bn mit y = f(x) für ein unbekanntes x. Dabei sind nur die Fälle interessant,
wo x gut ist.
Sei m = 200 n

ε2
und k minimal mit m ≤ 2k − 1. Wähle s1, . . . , sk ∈R Bk und de�niere

r1, . . . , rm wie oben. Für alle w ∈ Bk: Starte B mit der Annahme x � sj = wj für alle
j ∈ [k]. Wenn x = x1, . . . , xn f(x) = y erfüllt, dann halten und x ausgeben.

Die Analyse geht wie vorher auch nur dass der Fall abgewartet werden muss, wo x � sj
richtig geraten wird.

Satz 10 (PZGs mit polynomieller Dehnung).
Sei f eine Einwegpermutation, c ∈ N und x, r ∈ Bn, setze:

G(x, r) := r, f(x)t · r, f 2(x)t · r, . . . , f l(x)t · r

mit l = nc. Dann ist G ein PZG mit Dehnung l(2n) = n+ nc.
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Beweis

Wir führen einen Widerspruch zur Unvorhersehbarkeit des PZG. Sei also A ∈ PPT , so
dass für x, r ∈R Bn und i ∈R [N ] gilt:

Pr
[
A(r, f(x)t · r, . . . , f i−1(x)t · r) = f i(x)t · r

]
≥ 1

2
+ ε

Es wird nun ein B ∈ PPT konstruiert, welches xt·r aus f(x) und r mit Wahrscheinlichkeit
≥ 1/2 + ε berechnet im Widerspruch zum Goldreich-Levin-Theorem. B bekommt die
Eingabe y := f(x) und r, wählt i ∈ [N ] und berechnet f(y), . . . , f l−i(y) und gibt

a = A(r, yt · r, f(x)t · r, . . . , f l−i−1(y)t · r)

aus.

Da f eine Permutation ist, ist es die gleiche Verteilung als wenn wir x′ ∈R Bn und
x = f i(x′) wählen. A sieht f i(x′)t · r mit Wahrscheinlichkeit ≥ 1/2 + ε vorraus und damit
B auch xt · r. B trägt einfach das Problem an A heran und bringt es in das Format von
A. Damit kann B mit nicht vernachlässigbarer Abweichung von 1/2 im Widerspruch zum
Goldreich-Levin-Theorem xt · r berechnen.

V Zero-Knowledge Beweise

In mathematischen Beweisen von Aussagen wird mehr Information preisgegeben als nur
die Wahrheit der bewiesenen Aussage. Es gibt Fälle in denen diese Preisgabe an zusätzli-
chen Informationen nicht gewollt ist, dies führt zum Begri� der Zero-Knowledge Beweise.
Modelliert wird dies mit einer Interaktion zwischen einem Beweiser P (für Prover) und
Veri�zier V .

Zur Authentizi�zerung ist es interessant, die zur Authenti�kation nötigen Informationen
nicht preiszugeben, denn diese könnte abgefangen und z. B. wiedergegeben werden zur
fälschlichen Authenti�kation (Replay-Attacke). Bei einem Zero-Knowledge Beweis zur
Authenti�kation gibt es dieses Problem nicht mehr. Mathematisch de�niert:

De�nition 9 (Zero-Knowledge Beweise).
Sei L ∈ NP und M eine Turingmaschine, die in Polynomialzeit läuft, mit

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) : M(x, h) = 1. (p Polynom)

M entscheidet also L mit Hilfe eines Zeugen u.

Ein Paar (P, V ) von interaktiven Polynomialzeitalgorithmen heiÿt Zero-Knowledge Be-
weis für L, falls die folgenden Eigenschaften erfüllt sind: Vollständigkeit (Completen-
ess): Für jedes x ∈ L und Zerti�kat u = u(x) gilt

Pr [outV 〈P (x, ), V (x)〉] ≥ 2

3

Wobei 〈P (x, u), V (x)〉 die Interaktion zwischen P und V mit den gegebenen Eingaben
bezeichnet und outV I beschreibt die Ausgabe von V am Ende der Interaktion I.
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Zuverlässigkeit (Soundness): Wenn x /∈ L, dann gilt für jede Strategie P ∗ und Eingabe
u, dass

Pr [outV 〈P ∗(x, u), V (x)〉] ≤ 1

3

dabei ist P ∗ in keiner Weise beschränkt.

Perfect-Zero-Knowledge-Eigenschaft: Für alle Veri�zierstrategien V ∗ ∈ PPT exis-
tiert ein S∗ mit erwarteter probabilistischer Polynomiallaufzeit, so dass für alle x ∈ L
und u Zeuge dafür gilt:

outV ∗〈P (x, u), V ∗(x)〉 ≡ S∗(x)

Die Gleichheit bezieht sich auf die Gleichheit der Verteilungen. S∗ simuliert V ∗.

Die letzte Eigenschaft gewährleistet, dass kein Ver�zier Informationen erlangt, die er eh
schon haben könnte z. B. durch Ausführen vom Simulator S∗.

Beispiel (Zero-Knowledge Beweis für Graphenisomorphie (GI)):
Das Entscheidungsproblem der Graphenisomorphie ist es für Graphen G0 und G1 zu
entscheiden, ob G0

∼= G1, d. h. ob es eine Bijektion Φ : V (G0)→ V (G1) gibt, so dass

vw ∈ E(G0)⇔ Φ(v)Φ(w) ∈ E(G1)

oder anders formuliert, ob V (G0) = V (G1) und ob eine Permutation (o. E. V (G0) = [n])
π : [n] → [n] existiert, sodass G1 = π(G0) gilt. Hierfür existiert ein Zero-Knowledge
Beweis mit der Interaktion:
Eingabe: Graphen G0, G1 mit V (Gi) = [n] in Adjazenzmatrixform gegeben.
Eingabe von P : π : [n]→ [n] mit G1 = π(G0).

Interaktion: P wählt Permutation π1 ∈R Sn und sendet V die Adjazenzmatrix von π1(G1)
dieser Graph soll H heiÿen (dies wird inbesondere dann wichtig, wenn P kein Isomor-
phismus kennt). V wählt ein b ∈R {0, 1} zufällig und schickt es zu P . Nun antwortet P
mit π1 falls b = 1 und sonst mit π1 ◦ π. Diese Antwort sei mit π̃ bezeichnet.

Jetzt akzeptiert V genau dann wenn π1(G1) = π̃(Gb). Als Bild

G0
π //

π1◦π ##GG
GG

GG
GG

G G1

π1
��

π1(G1)

Vollständigkeit: Halten beide Parteien sich an das Protokoll, dann akzeptiert der Veri-
�zier das Ergebnis mit Wahrscheinlichkeit 1.
Zuverlässigkeit: Wenn G0 6∼= G1, dann wird der Ver�zierer mit einer Wahrscheinlichkeit
von ≥ 1/2 ablehnen. Denn ein Gb wird nicht isomorph zu H sein.
Perfect-Zero-Knowledge-Eigenschaft: Sei V ∗ ein Veri�zierer und S∗ der folgende
Simulator:

Bei Eingabe von zwei Graphen G0, G1 S
∗ wählt ein b′ ∈R B und eine zufällige Permutation

π ∈R S[n] und berechnet H = π(Gb′). S∗ sendet dann H an den Veri�zier und erhält b ∈ B
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zurück. Wenn b = b′ dann sendet S∗ π and V ∗ und gibt aus, was V ∗ ausgibt. Wenn b 6= b′

dann startet S∗ einen neuen Anlauf.

Die erste Nachricht von S∗ ist identisch verteilt zu der von P : Beide verschicken einen
zufälligen, zu G1 (und G0) isomorphen Graphen. Wenn b′ = b, dann sieht V ∗ die gleiche
Interaktion wie in einer richtigen Interaktion mit P . Die Wahrscheinlichkeit davon ist
1/2 also ist die Wahrscheinlichkeit, dass k Runden gebraucht werden 2−k. Damit ist die
erwartete Laufzeit

T (n)
∑
k≥1

2−k = O(T (n))

mit T (n) Laufzeit von V ∗.
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