Sortieren/Auswahl

Sortieralgos

Bogosort: alle 7 € S,, priifen
w:nl(n—1)avg : Z(Q(n!))
Selection-Sort: n-mal Min. ausgeben
w: O(n?)

Merge-Sort: % sortieren, mergen.
vV : O(nlog(n))

Quicksort: Nach Pivotelement
partitionieren und sort.

w : O(n?) avg : O(nlogn)
Suchproblem ist Q(nlogn), bei

|| < oo nicht.

Countingsort: Zihlen der Elemente
aus U

BucketSort: f : U — [r] nutzen,
dann Countingsort

Radixsort: Buckesort auf
Buchstaben mehrerer Worter von
hinten aufgerollt

e VYV Pfade Wurzel — Blatt
enthalten gleich viele schwarze

e Jedes Blatt ist schwarz

e (2,4)-Biume wenn rote mit
schwarzen Vitern verschmolzen

induziert wenn alle Kanten
iibernommen werden.

BB[a] Bidume

Balance(v) € [, 1 — @] fiir innere
Knoten v, Balance(v) = “?((5;"
(Anz. Blitter!)

Balancieren wie bei AVL.

Traversierung

Breitensuche: Suche iiber
Prioritdtswarteschlange (Schwestern
dann Kinder), findet immer
kiirzesten Weg Tiefensuche:
Rekursiv alle Kinder durchsuchen.
(Findet Zusammenhangskomp.)
Beide in O(nm).

Bruderbidume

e innere Knoten v: |c(v)| € [1,2]

e Knoten mit 1 Kind hat Bruder
mit 2 Kindern

e = jeder Knoten hat mind. 2
Enkel

Hohe in O(log(n)). Verschmilzt man

Viter mit ihren Einzelkindern, dann

hat man einen AVL-Baum.

Topologisches Sort

Ordnet bei gerichteten, azyklischen
Graphen, die Knoten so an, dass die
Kanten von links nach rechts gehen.
Zum bestimmen iiber Tiefensuche
nach Abfertigungszeit sortieren.

Select

Algorithmus: Gesucht: k-kleinstes
Element in sort. Liste

Zerlege iiber Pivotelement und
partioniere wie bei Quicksort
Pivotelement: Zufallig wiahlen
avg : O(n)

Deterministisch wihlen ©(n)

e Zerlege alles in 5-er Blocke

e Sortiere die Mediane und
bestimme Median rekursiv

Suchen
a in einer sort. F01§e S suchen
Bindrsuche: k = L%
Interpolsearch: U = [0, 1],
So:=0,S41 = 1S

a—
k:l—l—&-\_ﬁ(r—l-{-l)j
w : O(n)avg : O(loglogn).
Quadbinsearch: Spriinge von
k+i([vVr —1+ 1]+ 1), suche im
verbleibendem Intervall.
avg : O(loglogn)

Regmaschinen

Programme

A := B [op C], goto L,

GZ, GGZ, GLZ B,L. (R;) = Rg,
EKM: 1 Schritt/Register 1 Einheit
LKM: L(R) = logs(|R|) + 1 als
Kosten/Register

Sitze

T(n) LKM auf RAM,
Turingmaschine in O(T'(n)%).
RAM und TM polynomiell
verwandt.

Datenstrukturen

Hashing

h:U — [m], m € ©(|9]) ist
sinnvoll. Wenn h gut verteilt, dann
alles in O(1).

Biaume

Sind maximal azyklische, minimal

zusammenhéingende Graphen. Eine

Kante mehr und ein Zyklus entsteht.

Bindrbdume: Elemente im

linken/rechten Teilbaum sind

kleiner/gréBer als Wurzel des

Teilbaums. Erwartete Hohe in

O(logn). n-mal Einfiigen in

avg : ©(nlogn).

Tries:

e Verzweigungen sind Buchstaben

e Knoten sind (Teil-)Wérter,
markiert falls Worter

AVL-Biume

Erwartete Hohe bei n inneren
Knoten ©(logn)

|h(T} (v)) — k(T (v))] <1 Vo, sonst
Balancieren mit
Einfach/Doppeltrot.

(a,b)-Baume

b>2a—1,a>2

Vv innere Knoten: |c(v)| € [a, b]
|e(root(T))| > 2, Daten in Bléttern
log,,(n) < h < log, (n) + 1

Alle Bldtter haben gleiche Tiefe
Der kleinste ist (2,3)

EINF € O(logn) (evt. Spalten!)
STREICH € O(logn)
(adoptieren/verschmelzen)
B-Bédume sind (k,2k — 1) Biume

RS-Biume

e Rote haben 2 schwarze Kinder

Optimale Suchbiume

a; < ...< ap, mit p; als
Auftrittswkeit gegeben, ¢; W-keit
fiir (a;, a;y1), ap = —00, Ap41 = OO
Konstruktion

€ O(n®)(©(n?) = space)

ri,5: Index der Wurzel fiir T ;
ci,;j: Kosten von T j = ijjPTi’j
w;,j: Pa € [ai, a;])

for i = 0..n

Wit1,i = Gi

cit1,; =0

endfor

for k = 0..n-1, i = 1..n-k
j=i+k

Sei m € [4, 5] mit ¢im—1 + Cm41,5
min.

Ti,g = m

Wi, j = Wi,m—1 1t Wm41,j + Pm
Ci,j = Ciym—1 1 Cm+1,5 + Wi j
endfor

Tabelle bauen mit Spalten i = 0..n
und Spalten init und k = 0..n — 1.
Index Wurzel ist my, = 71,0

ML = T1lmy—1Mr = Tmy+1,n-
Verbesserung Wurzelsuche: O(n?)

Zusammenhangskomp.

Fithre DF S(G) aus, nummeriere in
DFS-Reihenfolge. Hochste
Nummern jeweils in DFS(GT)
wihlen. Die Tiefensuchbdume sind
nun Zusammenhangskompomenten.

MSTs

Lemma: Spannender Wald (V;, T3;),
wenn e = (u € Vi,v ¢ Vi) mit min.
Kosten, dann 3 MST von G, der

T U {e} enthilt.

Kruskal € O(mlogm)

Fange mit den Baumen {v;} an.
Finde minimale Kante, finde Baume
davon, wenn ungleich Vereinige sie.
Entferne Kante.

Single-shortest-Paths

Dijkstra € O((m + n)logn)

S :={s}D[s] :=0

forall V 3 v # s, D[v] := C(s,v)
while V.— S # 0

w = mingev—g Dw]

SU=w

for eachu € V. — S, (w,u) € E
D[u] := min(D[u], D[w] + C(w, u))
endwhile

Union-Find

S = [n]vs = U";:l
Vereinige(S;, S;):
S = S\{S“ SJ} U {SI U SJ}
(O(1)=)

Finde(a): finde a € S; € S. (©(n)).
Strukturell als Wald, jedes S; ist ein
Baum, die Elemente aus S; zeigen
auf ihren Vaterknoten mit einen
Reprisentanten von S; als Wurzel.
Hdéhenbalancierung: Finde

€ O(logn)

Pfadkompression: (Aufsammeln der
Knoten des Suchpfads) mx Finde

€ O((m + n)log*(n))(avg), auch in
O(ma(m, n)) mit

a(m,n) = min{z >

1,A(z,4-[2]) > logn}

S; Partition.

Graphen

All-shortest-Paths
Floyd-Warshall € ©(n?)
for 7,5 =1..n
0 _ Je(i ),
d;j = .

(i,j) € E
else
for k,i,7 =1..n
k . k—1 k—1 k—1
d{*) = min(d*7V, d5 7 4 )

Fliisse

Netz (G,c: E — Rx>q, s, t). Fluss

f:V2 SR

o f(u,v) <c(u,v)Vu,v €V

o f(u,v) = f(v,u) Vu,v € V

o > ey f(u,v) =0Vu € V\{s,t}

1= 55y (F(50))

X,YCV:f(X,Y)=

Zzgx,ygy f(Iv y)

Es gilt (Lemma) (X,Y,Z C V)

e f(X,X)=0

e f(X,Y)=—-f(Y,X)

e f ist U-bilinear unter disjunkten
Mengen

Definitionen

G = (V, E) als Graph gegeben.

V| =n,|E| =m.

W = (vi,...,Vn),v; €V heiit
‘Weg. Wenn v; paarweise ungleich,
dann ist er einfach. Wenn v, = v,
dann ist es ein Kreis.

Der Durchmesser von G ist das
Maximum der Abstidnde zwischen
den Knotenpaaren.

Ein Graph ist zusammenhingend,
wenn ein Weg zwischen jedem
Knotenpaar existiert. Bei
gerichteten Graphen stark
zusammenhingend wenn es fiir
beide Richtungen Wege gibt.

Eine
Zusammenhangskomponente ist
ein maximaler Teilgraph von G, der
zusammenhingend aber nicht
erweiterbar ist.

Die Inzidenzmatrix ist eine n X m
Matrix, in der Spalte jeder Kante
(vi,vj) wird in Zeile i|j eine 1| — 1
eingetragen, wenn G ungerichtet,
dann Betrag der Matrix nehmen.
Ein Graph ist Bipartit, wenn es
eine 2-Partition gibt, sodass nur
Kanten zwischen den
Partitionsmengen verlaufen.
Teilgraph: V', E' C V, E’,

Min-Cut-Max-Flow
Fiir (G, ¢, s,t) und f sind dquivalent

e f ist maximaler Fluss

e Es ex. keine aug. Wege in G

e Es ex. ein Cut (S,T), sodass
(S, T) = |1l

Ford-Fulkerson € O(|f*|m)
while 3 augm. Weg s — t P in G
erhéhe Fluss fiir jede Kante im Weg

Edmonds-Karp € O(nm?)
Breitensuche statt Tiefensuche,
sonst wie FF. Augmentierungen
€ O(nm).

Bipartites Matching

Ein Matching M C E, wenn keine
zwei Kanten gleiche Endpunkte
haben. Finden mit
Superquellen/senken Trick.

Satz: ¢(E) C Ng, dann |f*| € Np.
Bester Algo € O(y/nm).

String-Pattern-Matching
Endliches Alphabet ¥ gegeben,
TexX", Pex™, m<mn. Wir
suchen die Vorkommen von P in T.
Prifiz: w ist ein Anfangsstiick (
Prifix ) von z (@ C w ), wenn
Ju € ¥*: z = wu mit w,x € T*.
Suffiz: w ist ein Endstiick (Suffix)
von z (z J w), wenn

Ju € T* 1 z = uw, mit w,z € T*.
Der naive Algorithmus priift einfach
alle moglichen Anfangstellen von
l.n—mvon T € ©(nm).
Knuth-Morris-Pratt

Algorithm 1 KMP-Algo €
O(n+m)
1: Berechne fiir
Prifixfunktion m
2: q:=0;
3: fori:=1,...,ndo
4:  while ((¢ > 0)A
(Plg+1] # T'[i])) do

P die

5: q:=mlq]
: end while
if (Plg+ 1] =TI
then
8: q:=q+1;
9: end if

10:  if (¢ = m) then
11: Match(i —m);

12: q:=m|q]
13:  end if

14: end for
Suffixbdume

e n Blatter

e innere Knoten (auBler Wurzel)
hat mind. zwei Kinder

e Kanten sind mit nichtleeren
Teilwortern von T beschriftet

o Zwei verschiedene Kanten mit
gleichem Anfangsknoten haben
ungleiche Anfangsbuchstaben

e Die Beschriftung eines Weges
von der Wurzel bis zum Blatt B;
ergibt T'[i...n]

o Wenn das Suffix S[n..n] ein
Prifix eines anderen Suffix
S[i..n] mit ¢ # n ist, dann hénge
ein $ ans Wort (ein Symbol,
welches sonst nicht benutzt
wird)

NP-Vollstindigkeit

P, NP, NPH ...
P = {L£|3 Algorithmus A, der in
polynomieller (in der Eingabegrofie)
Laufzeit, bestimmt ob ein w € L}
ist, bzw. eine DTM T bestimmt in
polynomieller Laufzeit
(Eingabegréfie) ob w € L.
NP = {L] es existiert ein
polynomieller Algorithmus A, der
fiir alle w € L fur die ein x existiert
mit |z| < |w|* (k € No) bzw.
|z| < p(Jw]) fiir p € N[z], sodass
A(z,w) = 1}, bzw. eine NTM T die
das Problem in polynomiell
beschrinkter Zeit 16st.
co— NP ={L|L° € NP}
= {w|Va : 2] < [w]* : Az, w) =
0} mit poly. Algo. A und k € N.
Polynomielle Reduktion Fiir zwei
L1,L2 CE*: Ly <p L2 &
3f € Abb(Z*,2), welches in
polynomieller Zeit berechenbar ist,
sodass w € L1 < f(w) € Lo.
L ist N'P-schwer (N'PH), wenn
VL e NP : L' <p L, sie ist
NP-vollstiandig (NPC), wenn
zusétzlich noch £ € NP ist.
NP-Beweis
Um zu zeigen, dass £L € NP
e Algorithmus A polynomiell in

| + .
e Gib k (bzw. p) an
e Zwei Richtungen:

’C’: Fiir w € L bel., nenne

Zeugen z mit |z| < |w|* baw.

< p(Jwl|), so daBB A(z,w) = 1.
e ’'D’: (a) Kontraposition:

wé¢ L= Az, w) =0V

oder (b) A(z,w) =1, dann

w € L.




NPC-Probleme
SAT

Geg.: ¢(z1,...
Formel.

Ges.: Ex. erfiillende Belegung?
PARTITION

, &y ) Boolsche

Geg.: a1,...,ap € Z,n € N.

Ges.: 3 C {1,...,n} mit

Yier @i = ngz[ as-
SUBSET-SUM

Geg.: S=a1,...,an,b€Z, n €N.
Ges.: I C {1,...,n} mit

Ziel a; =b.

CLIQUE

Geg.: Graph G und k € N.

Ges.: Enthilt G eine k-Clique?
INDEPENDENT-SET

Geg.: Graph G und k € N.

Ges.: AV € (V(,CG)), sodass
VYui,ve € V: {vi,v2} ¢ E(G).
VERTEX-COVER

Geg.: Graph G und k € N.

Ges.: Findet man ein I C V(G) mit
|I| = k, sodass

Ve€ E(G):INne#0.

HC/HP

Geg.: (un-)gerichteter Graph G
Ges.: Ex. ein Hamiltonpfad/kreis in
G?

ZOLLSTOCK

Geg.: Teilstiickldngen lq,...,1,
und [ € N.

Ges.: Lisst sich der Zollstock auf
eine Lange < [ falten?
SCHEDULING

Geg.: t1,...,tn,t € N.

Ges.: I C{l,...,n}: >, ti <t
und Ziel\[n] t; <t
KASTENPACKEN

Geg.: s1,...,8, € (0,1), k € N.
Ges.: Kann man die s; in k
Behilter mit Volumen 1
unterbringen?

TGI

Geg.: Graph G1, G2

Ges.: 3G, C G2, sodass G
isomorph zu G17

TSP

Geg.: G = (V, E) vollstindig,
gerichteter, ¢ : E — Np.

Ges.: Finde Kreis, der alle Knoten
genau einmal abgedeckt, mit
minimalen Kosten.

A-TSP:

Wie TSP nur A-Ungleichung erfiillt
und symmetrische Abstandsmatrix
D = (di,j)1<i,j<n gegeben.

Fir kein oo > 1 existiert bei
P # NP ein a-approximativer
Algorithmus.

Jenseits von NP

t,s: N —N:

TIME(t(n)): Alle Sprachen, die in
t(n) Zeit entscheidbar sind.
SPACE(s(n)): In s(n) Platz.
PSPACE =

Uren SPACE(O(n*)).

k
EXPTIME = UkeN7C€R+ O(c™).
TIME(t(n)) C SPACE(t(n)).
QBF ist PSPACE-complete. Man
hat eine Formel mit
Quantorausdriicken am Anfang und
mochte wissen, ob dieser Ausdruck
’wahr’ oder ’falsch’ ist. GEO ist
dies ebenfalls.
Hierarchiesétze
s1 = o(s2) = SPACE(s1) C
SPACE(s2).
TilogTy € o(t2) = TIME(ty) C
TIME(ts2).

Approximationsalgorithmen

Sei II ein Optimierungsproblem, sei
I in die Optimale Lésung (fiir
Minimierungsproblem), dann heisst
ein Algorithmus A a-approximativ,
wenn fiir alle Losungen I4 gilt:
c(Ia) < ac(Imin)-

Baumbheuristik
Lost A-TSP
o Berechne MST T fiir G bzgl. D

e Verdoppel jede Kante von T'
(Eulersche Multigraph M als
Ergebnis)

o Bestimme Eulerschen Weg M
und konstruiere daraus
Rundreise 7 in G gemaB:
Lemma: M Eulerscher
Multigraph auf V = {1,...,n}
mit Kosten
c(M) = Z{i,j}eE(M) di,j- Dann
findet man Rundreise 7 auf V' in
O(|E|) Zeit mit ¢(7) < ¢(M).
D.h. man iteriert den Weg und
entfernt die Knoten, wenn sie
nicht zum ersten Mal auftreten.

Die Baumheuristik ist

2-approximativ.

Christofides-Heuristik

Algorithmus

Eingabe: G durch Abstandsmatrix

D = (d;,;) mit A-Ungleichung.

e Berechne MST T von G bzgl. D

o Sei U ={veV(T)|deg(v) €
27 + 1}. Bestimme das
Kostengiinstigste Matching und
fiige Kanten hinzu (damit nun
alle Knoten in T geraden Grad
haben)

e Bestimme nun wieder den
Eulerweg in T' und bilde die
Tour wie gehabt.

(F)PTAS

Ein (Fully) Polynomial-Time
Approximation Scheme ist ein
Algorithmus fiir ein Problem, der
fiir ein € > 0 1 & e-approximierbar
ist und fiir festes € polynomiell in

der Eingabeldnge n ist. Er ist ein
FPTAS, wenn er sogar polynomiell
in % und n ist.

PTAS fir SUBSET-SUM:

e Sortiere die a; aufsteigend.

e Bilde fiir i = 1..n alle moéglichen
Summen, sortiere diese
aufsteigend — L;

e Setze § = £ und trimme die
Liste derartig, dass ein Element
entfernt wird, wenn es
multipliziert mit 1 — é kleiner
gleich eines Vorgéngers wird.
Entferne alle Summen > k

Formeln
Hn =37, % € ©(log(n))

Fib(n) > @"~ ! = (@)71

6
nl ~V2mrn (2)"eT2n 6 € (0,1)
noo1 =2

i=13;2 — 6
g2 = n(n+1)(2n+1)
=1t = 6

Anderes
Hohe W-keit:
Laufzeit effizient Las-Vegas
Ergebnis korrekt Monte-Carlo
log*(n > 1) = log* (log(n)) + 1
log*(n <1)=0
©(nlog(n)) Obj. aus |[A| =n
wihlen Va € A mind. 1 mal.
T(n) <Y ,o, T(lain]) + O(n) €
O(n), wenn 3,5, a; < 1 und
[e73 Z 0 B
P(X — BIX]| > a) < YerX]
Bin(2n, n)ﬁ
Suchbdume mit n Knoten

~ 4" mogliche

Ackermannfunktion

Function A(z,y)

A(0,0) =0,A(,0) =1

A(0,z) =2z

AGi+1,2) = At A(i+ 1,2 — 1))



