
Sortieren/Auswahl

Sortieralgos
Bogosort: alle π ∈ Sn prüfen
w : n!(n− 1) avg : n!

2 (Ω(n!))
Selection-Sort: n-mal Min. ausgeben
w : Θ(n2)
Merge-Sort: 1

2 sortieren, mergen.
∀ : Θ(n log(n))
Quicksort: Nach Pivotelement
partitionieren und sort.
w : Θ(n2) avg : Θ(n logn)
Suchproblem ist Ω(n logn), bei
|U| <∞ nicht.
Countingsort: Zählen der Elemente
aus U
BucketSort: f : U → [r] nutzen,
dann Countingsort
Radixsort: Buckesort auf
Buchstaben mehrerer Wörter von
hinten aufgerollt
Select

Algorithmus: Gesucht: k-kleinstes
Element in sort. Liste
Zerlege über Pivotelement und
partioniere wie bei Quicksort
Pivotelement: Zufällig wählen

avg : O(n)
Deterministisch wählen Θ(n)

• Zerlege alles in 5-er Blöcke

• Sortiere die Mediane und
bestimme Median rekursiv

Suchen
a in einer sort. Folge S suchen
Binärsuche: k = b l+r2 c
Interpolsearch: U = [0, 1],

S0 := 0, Sn+1 = 1

k = l− 1 + b
a−Sl−1

Sr+1−Sl−1
(r − l + 1)c

w : Θ(n) avg : O(log logn).
Quadbinsearch: Sprünge von

k ± i(b
√
r − l + 1c+ 1), suche im

verbleibendem Intervall.
avg : O(log logn)

Regmaschinen
Programme
A := B [op C], goto L,
GZ, GGZ, GLZ B,L. (Ri) = RRi
EKM: 1 Schritt/Register 1 Einheit
LKM: L(R) = log2(|R|) + 1 als
Kosten/Register

Sätze
T (n) LKM auf RAM,
Turingmaschine in O(T (n)5).
RAM und TM polynomiell
verwandt.

Datenstrukturen
Hashing
h : U → [m], m ∈ Θ(|S|) ist
sinnvoll. Wenn h gut verteilt, dann
alles in O(1).

Bäume
Sind maximal azyklische, minimal
zusammenhängende Graphen. Eine
Kante mehr und ein Zyklus entsteht.

Binärbäume: Elemente im
linken/rechten Teilbaum sind
kleiner/größer als Wurzel des
Teilbaums. Erwartete Höhe in
O(logn). n-mal Einfügen in
avg : Θ(n logn).

Tries:

• Verzweigungen sind Buchstaben

• Knoten sind (Teil-)Wörter,
markiert falls Wörter

AVL-Bäume
Erwartete Höhe bei n inneren
Knoten Θ(logn)
|h(Tl(v))− h(Tr(v))| ≤ 1 ∀v, sonst
Balancieren mit
Einfach/Doppeltrot.

(a, b)-Bäume
b ≥ 2a− 1, a > 2
∀v innere Knoten: |c(v)| ∈ [a, b]
|c(root(T ))| ≥ 2, Daten in Blättern
logb(n) ≤ h ≤ loga(n) + 1
Alle Blätter haben gleiche Tiefe
Der kleinste ist (2,3)
EINF ∈ O(logn) (evt. Spalten!)
STREICH ∈ O(logn)
(adoptieren/verschmelzen)
B-Bäume sind (k, 2k − 1) Bäume

RS-Bäume

• Rote haben 2 schwarze Kinder

• ∀ Pfade Wurzel → Blatt
enthalten gleich viele schwarze

• Jedes Blatt ist schwarz

• (2, 4)-Bäume wenn rote mit
schwarzen Vätern verschmolzen

BB[α] Bäume
Balance(v) ∈ [α, 1− α] für innere

Knoten v, Balance(v) =
|Tl(v)|
|T (v)|

(Anz. Blätter!)
Balancieren wie bei AVL.
Bruderbäume

• innere Knoten v: |c(v)| ∈ [1, 2]

• Knoten mit 1 Kind hat Bruder
mit 2 Kindern

• ⇒ jeder Knoten hat mind. 2
Enkel

Höhe in O(log(n)). Verschmilzt man
Väter mit ihren Einzelkindern, dann
hat man einen AVL-Baum.
Optimale Suchbäume
a1 < . . . < an mit pi als
Auftrittswkeit gegeben, qi W-keit
für (ai, ai+1), a0 = −∞, an+1 =∞
Konstruktion
∈ O(n3)(Θ(n2) = space)
ri,j : Index der Wurzel für Ti,j
ci,j : Kosten von Ti,j = wi,jPTi,j
wi,j : P (a ∈ [ai, aj ])
for i = 0..n
wi+1,i = qi
ci+1,i = 0
endfor
for k = 0..n-1, i = 1..n-k
j = i+ k
Sei m ∈ [i, j] mit ci,m−1 + cm+1,j
min.
ri,j = m
wi,j = wi,m−1 + wm+1,j + pm
ci,j = ci,m−1 + cm+1,j + wi,j
endfor
Tabelle bauen mit Spalten i = 0..n
und Spalten init und k = 0..n− 1.
Index Wurzel ist mw = r1,n.
ml = r1,mw−1,mr = rmw+1,n.

Verbesserung Wurzelsuche: O(n2)

Union-Find
S = [n],S =

⋃k
i=1 Si Partition.

Vereinige(Si, Sj):
S := S\{Si, Sj} ∪ {Si ∪ Sj}
(O(1)=)
Finde(a): finde a ∈ Si ∈ S. (Θ(n)).
Strukturell als Wald, jedes Si ist ein
Baum, die Elemente aus Si zeigen
auf ihren Vaterknoten mit einen
Repräsentanten von Si als Wurzel.

Höhenbalancierung: Finde
∈ O(logn)

Pfadkompression: (Aufsammeln der
Knoten des Suchpfads) m× Finde
∈ O((m+ n) log∗(n))(avg), auch in
O(mα(m,n)) mit
α(m,n) = min{z ≥
1, A(z, 4 · dmn e) > logn}

Graphen
Definitionen
G = (V,E) als Graph gegeben.
|V | = n, |E| = m.
W = (v1, . . . , vn), vi ∈ V heißt
Weg. Wenn vi paarweise ungleich,
dann ist er einfach. Wenn v1 = vn
dann ist es ein Kreis.
Der Durchmesser von G ist das
Maximum der Abstände zwischen
den Knotenpaaren.
Ein Graph ist zusammenhängend,
wenn ein Weg zwischen jedem
Knotenpaar existiert. Bei
gerichteten Graphen stark
zusammenhängend wenn es für
beide Richtungen Wege gibt.
Eine
Zusammenhangskomponente ist
ein maximaler Teilgraph von G, der
zusammenhängend aber nicht
erweiterbar ist.
Die Inzidenzmatrix ist eine n×m
Matrix, in der Spalte jeder Kante
(vi, vj) wird in Zeile i|j eine 1| − 1
eingetragen, wenn G ungerichtet,
dann Betrag der Matrix nehmen.
Ein Graph ist Bipartit, wenn es
eine 2-Partition gibt, sodass nur
Kanten zwischen den
Partitionsmengen verlaufen.
Teilgraph: V ′, E′ ⊆ V,E′,

induziert wenn alle Kanten
übernommen werden.
Traversierung

Breitensuche: Suche über
Prioritätswarteschlange (Schwestern
dann Kinder), findet immer
kürzesten Weg Tiefensuche:

Rekursiv alle Kinder durchsuchen.
(Findet Zusammenhangskomp.)
Beide in O(nm).

Topologisches Sort
Ordnet bei gerichteten, azyklischen
Graphen, die Knoten so an, dass die
Kanten von links nach rechts gehen.
Zum bestimmen über Tiefensuche
nach Abfertigungszeit sortieren.
Zusammenhangskomp.
Führe DFS(G) aus, nummeriere in
DFS-Reihenfolge. Höchste
Nummern jeweils in DFS(GT )
wählen. Die Tiefensuchbäume sind
nun Zusammenhangskompomenten.
MSTs
Lemma: Spannender Wald (Vi, Ti),
wenn e = (u ∈ V1, v /∈ V1) mit min.
Kosten, dann ∃ MST von G, der
T ∪ {e} enthält.
Kruskal ∈ O(m logm)
Fange mit den Bäumen {vi} an.
Finde minimale Kante, finde Bäume
davon, wenn ungleich Vereinige sie.
Entferne Kante.
Single-shortest-Paths
Dijkstra ∈ O((m+ n) logn)
S := {s}D[s] := 0
forall V 3 v 6= s, D[v] := C(s, v)
while V − S 6= ∅
w := minw∈V−S D[w]
S∪ = w
for each u ∈ V − S, (w, u) ∈ E
D[u] := min(D[u], D[w] + C(w, u))
endwhile
All-shortest-Paths
Floyd-Warshall ∈ Θ(n3)
for i, j = 1..n

d
(0)
i,j =

{
c(i, j), (i, j) ∈ E
∞, else

for k, i, j = 1..n

d
(k)
i,j = min(d

(k−1)
i,j , d

(k−1)
i,k + d

(k−1)
k,j )

Flüsse
Netz (G, c : E → R≥0, s, t). Fluss

f : V 2 → R:

• f(u, v) ≤ c(u, v) ∀u, v ∈ V
• f(u, v) = f(v, u) ∀u, v ∈ V
•
∑
v∈V f(u, v) = 0 ∀u ∈ V \{s, t}

|f | =
∑
v∈V (f(s, v))

X,Y ⊆ V : f(X,Y ) =∑
x∈X,y∈Y f(x, y)

Es gilt (Lemma) (X,Y, Z ⊆ V )

• f(X,X) = 0

• f(X,Y ) = −f(Y,X)

• f ist ∪-bilinear unter disjunkten
Mengen

Min-Cut-Max-Flow
Für (G, c, s, t) und f sind äquivalent

• f ist maximaler Fluss

• Es ex. keine aug. Wege in Gf
• Es ex. ein Cut (S, T ), sodass
c(S, T ) = |f |

Ford-Fulkerson ∈ O(|f∗|m)
while ∃ augm. Weg s→ t P in Gf
erhöhe Fluss für jede Kante im Weg

Edmonds-Karp ∈ O(nm2)
Breitensuche statt Tiefensuche,
sonst wie FF. Augmentierungen
∈ O(nm).

Bipartites Matching
Ein Matching M ⊆ E, wenn keine
zwei Kanten gleiche Endpunkte
haben. Finden mit
Superquellen/senken Trick.
Satz: c(E) ⊆ N0, dann |f∗| ∈ N0.
Bester Algo ∈ O(

√
nm).

String-Pattern-Matching
Endliches Alphabet Σ gegeben,
T ∈ Σn, P ∈ Σm, m ≤ n. Wir
suchen die Vorkommen von P in T .
Präfix: w ist ein Anfangsstück (

Präfix ) von x ( x @ w ), wenn
∃u ∈ Σ∗: x = wu mit w, x ∈ Σ∗.

Suffix: w ist ein Endstück (Suffix)
von x (x A w), wenn

∃u ∈ Σ∗ : x = uw, mit w, x ∈ Σ∗.
Der naive Algorithmus prüft einfach
alle möglichen Anfangstellen von
1..n−m von T ∈ Θ(nm).

Knuth-Morris-Pratt

Algorithm 1 KMP-Algo ∈
O(n+m)
1: Berechne für P die

Präfixfunktion π
2: q := 0;
3: for i := 1,. . . ,n do
4: while ((q > 0)∧

(P [q + 1] 6= T [i])) do
5: q := π [q]
6: end while
7: if (P [q + 1] = T [i])

then
8: q := q + 1;
9: end if

10: if (q = m) then
11: Match(i−m);
12: q := π [q]
13: end if
14: end for

Suffixbäume

• n Blätter
• innere Knoten (außer Wurzel)

hat mind. zwei Kinder
• Kanten sind mit nichtleeren

Teilwörtern von T beschriftet
• Zwei verschiedene Kanten mit

gleichem Anfangsknoten haben
ungleiche Anfangsbuchstaben

• Die Beschriftung eines Weges
von der Wurzel bis zum Blatt Bi
ergibt T [i . . . n]

• Wenn das Suffix S[n..n] ein
Präfix eines anderen Suffix
S[i..n] mit i 6= n ist, dann hänge
ein $ ans Wort (ein Symbol,
welches sonst nicht benutzt
wird)

NP-Vollständigkeit
P, NP, NPH . . .
P = {L|∃ Algorithmus A, der in
polynomieller (in der Eingabegröße)
Laufzeit, bestimmt ob ein w ∈ L}
ist, bzw. eine DTM T bestimmt in
polynomieller Laufzeit
(Eingabegröße) ob w ∈  L.
NP = {L| es existiert ein
polynomieller Algorithmus A, der
für alle w ∈ L für die ein x existiert
mit |x| < |w|k (k ∈ N0) bzw.
|x| ≤ p(|w|) für p ∈ N[x], sodass
A(x,w) = 1}, bzw. eine NTM T die
das Problem in polynomiell
beschränkter Zeit löst.
co−NP = {L |Lc ∈ NP}
= {w | ∀x : |x| ≤ |w|k : A(x,w) =
0} mit poly. Algo. A und k ∈ N.
Polynomielle Reduktion Für zwei
L1,L2 ⊂ Σ∗: L1 ≤P L2 ⇔
∃f ∈ Abb(Σ∗,Σ∗), welches in
polynomieller Zeit berechenbar ist,
sodass w ∈ L1 ⇔ f(w) ∈ L2.
L ist NP-schwer (NPH), wenn
∀L′ ∈ NP : L′ ≤P L, sie ist
NP-vollständig (NPC), wenn
zusätzlich noch L ∈ NP ist.
NP-Beweis
Um zu zeigen, dass L ∈ NP
• Algorithmus A polynomiell in
|x|+ |w|.

• Gib k (bzw. p) an
• Zwei Richtungen:

’⊆’: Für w ∈ L bel., nenne
Zeugen x mit |x| ≤ |w|k bzw.
≤ p(|w|), so daß A(x,w) = 1.

• ’⊇’: (a) Kontraposition:
w /∈ L ⇒ A(x,w) = 0 ∀x
oder (b) A(x,w) = 1, dann
w ∈ L.



NPC-Probleme
SAT
Geg.: φ(x1, . . . , xn) Boolsche
Formel.
Ges.: Ex. erfüllende Belegung?
PARTITION
Geg.: a1, . . . , an ∈ Z, n ∈ N.
Ges.: ∃I ⊂ {1, . . . , n} mit∑
i∈I ai =

∑
j /∈I aj .

SUBSET-SUM
Geg.: S = a1, . . . , an, b ∈ Z, n ∈ N.
Ges.: I ⊂ {1, . . . , n} mit∑
i∈I ai = b.

CLIQUE
Geg.: Graph G und k ∈ N.
Ges.: Enthält G eine k-Clique?
INDEPENDENT-SET
Geg.: Graph G und k ∈ N.

Ges.: ∃V ∈
(V (G)

k

)
, sodass

∀v1, v2 ∈ V : {v1, v2} /∈ E(G).
VERTEX-COVER
Geg.: Graph G und k ∈ N.
Ges.: Findet man ein I ⊆ V (G) mit
|I| = k, sodass
∀e ∈ E(G) : I ∩ e 6= ∅.
HC/HP
Geg.: (un-)gerichteter Graph G
Ges.: Ex. ein Hamiltonpfad/kreis in
G?
ZOLLSTOCK
Geg.: Teilstücklängen l1, . . . , ln
und l ∈ N.
Ges.: Lässt sich der Zollstock auf
eine Länge ≤ l falten?
SCHEDULING
Geg.: t1, . . . , tn, t ∈ N.
Ges.: I ⊆ {1, . . . , n}:

∑
i∈I ti ≤ t

und
∑
i∈I\[n] ti ≤ t.

KASTENPACKEN
Geg.: s1, . . . , sn ∈ (0, 1), k ∈ N.
Ges.: Kann man die si in k
Behälter mit Volumen 1
unterbringen?

TGI
Geg.: Graph G1, G2
Ges.: ∃G′2 ⊆ G2, sodass G′2
isomorph zu G1?
TSP
Geg.: G = (V,E) vollständig,
gerichteter, c : E → N0.
Ges.: Finde Kreis, der alle Knoten
genau einmal abgedeckt, mit
minimalen Kosten.
∆-TSP:
Wie TSP nur ∆-Ungleichung erfüllt
und symmetrische Abstandsmatrix
D = (di,j)1≤i,j≤n gegeben.

Jenseits von NP
t, s : N→ N:
TIME(t(n)): Alle Sprachen, die in
t(n) Zeit entscheidbar sind.
SPACE(s(n)): In s(n) Platz.
PSPACE =⋃
k∈N SPACE(O(nk)).

EXPTIME =
⋃
k∈N,c∈R+ O(cn

k
).

TIME(t(n)) ⊂ SPACE(t(n)).
QBF ist PSPACE-complete. Man
hat eine Formel mit
Quantorausdrücken am Anfang und
möchte wissen, ob dieser Ausdruck
’wahr’ oder ’falsch’ ist. GEO ist
dies ebenfalls.
Hierarchiesätze
s1 = o(s2)⇒ SPACE(s1) ⊂
SPACE(s2).
T1 log T1 ∈ o(t2)⇒ TIME(t1) ⊂
TIME(t2).

Approximationsalgorithmen
Sei Π ein Optimierungsproblem, sei
Imin die Optimale Lösung (für
Minimierungsproblem), dann heisst
ein Algorithmus A α-approximativ,
wenn für alle Lösungen IA gilt:
c(IA) ≤ αc(Imin).

Für kein α > 1 existiert bei
P 6= NP ein α-approximativer
Algorithmus.
Baumheuristik
Löst ∆-TSP

• Berechne MST T für G bzgl. D

• Verdoppel jede Kante von T
(Eulersche Multigraph M als
Ergebnis)

• Bestimme Eulerschen Weg M
und konstruiere daraus
Rundreise τ in G gemäß:
Lemma: M Eulerscher
Multigraph auf V = {1, . . . , n}
mit Kosten
c(M) =

∑
{i,j}∈E(M) di,j . Dann

findet man Rundreise τ auf V in
O(|E|) Zeit mit c(τ) ≤ c(M).
D.h. man iteriert den Weg und
entfernt die Knoten, wenn sie
nicht zum ersten Mal auftreten.

Die Baumheuristik ist
2-approximativ.
Christofides-Heuristik
Algorithmus
Eingabe: G durch Abstandsmatrix
D = (di,j) mit ∆-Ungleichung.

• Berechne MST T von G bzgl. D

• Sei U = {v ∈ V (T ) | deg(v) ∈
2Z + 1}. Bestimme das
Kostengünstigste Matching und
füge Kanten hinzu (damit nun
alle Knoten in T geraden Grad
haben)

• Bestimme nun wieder den
Eulerweg in T und bilde die
Tour wie gehabt.

(F)PTAS
Ein (Fully) Polynomial-Time
Approximation Scheme ist ein
Algorithmus für ein Problem, der
für ein ε > 0 1± ε-approximierbar
ist und für festes ε polynomiell in

der Eingabelänge n ist. Er ist ein
FPTAS, wenn er sogar polynomiell
in 1

ε und n ist.

PTAS für SUBSET-SUM:

• Sortiere die ai aufsteigend.

• Bilde für i = 1..n alle möglichen
Summen, sortiere diese
aufsteigend → Li

• Setze δ = ε
δ und trimme die

Liste derartig, dass ein Element
entfernt wird, wenn es
multipliziert mit 1− δ kleiner
gleich eines Vorgängers wird.
Entferne alle Summen > k

Formeln
Hn =

∑n
i=1

1
n ∈ Θ(log(n))

Fib(n) ≥ Φn−1 =
(√

5+1
2

)n−1

n! ∼
√

2πn
(
n
e

)n e θ
12n θ ∈ (0, 1)∑n

i=1
1
i2

= π2
6∑n

i=1 i
2 =

n(n+1)(2n+1)
6

Anderes
Hohe W-keit:
Laufzeit effizient Las-Vegas
Ergebnis korrekt Monte-Carlo
log∗(n > 1) = log∗(log(n)) + 1
log∗(n ≤ 1) = 0
Θ(n log(n)) Obj. aus |A| = n
wählen ∀a ∈ A mind. 1 mal.
T (n) ≤

∑
i≥1 T (bαinc) +O(n) ∈

O(n), wenn
∑
i≥1 αi < 1 und

αi ≥ 0

P (|X − E[X]| ≥ a) ≤ V ar[X]
a2

Bin(2n, n) 1
n+1 ≈ 4n mögliche

Suchbäume mit n Knoten
Ackermannfunktion
Function A(x, y)
A(0, 0) = 0, A(i, 0) = 1
A(0, x) = 2x
A(i+ 1, x) = A(i, A(i+ 1, x− 1))


