
4 Extremale Graphentheorie

4.1 Verbotene Untergraphen
Def. Für einen Graphen F bezeichne ex(n, F ) die maximale Anzahl von Kanten
eines Graphen mit n Ecken, der F nicht enthält. EX(n, F ) ist die Menge der
Graphen G mit |G| = n, F 6⊆ G und ‖G‖ =: ex(n, F ).

Satz: Sei g, δ ≥ 3, dann hat jeder Graph G mit δ(G) = δ und Taillenweite
g(G) = g mindestens

n0(g, δ) =

{
1 + δ

δ−2
[
(δ − 1)(g−1)/2 − 1

]
, g ungerade

2
δ−2

[
(δ − 1)g/2

]
− 1, g gerade

Ecken.

Satz (von Pósa): SeiG zsh. mit n ≥ 3 Ecken und für je zwei nicht benachbarte
Ecken x, y ∈ V gelte d(x)+d(y) ≥ k, dann gilt: Ist k = n, so ist G hamiltonisch.
Ist k < n, dann enthält G einen Weg der Länge k und einen Kreis der Länge
≥ k+2

2 .

Def. Ein Turán-Graph Tr(n) ist ein vollständiger r-partiter Graph der Ordnung
n, dessen Partitionsklassen sich in ihrer Größe so wenig wie möglich unterschei-
den.

Lemma: Tr(n) ist der eindeutig bestimmte r-partite Graph der Ordnung n
mit maximaler Größe. Damit können wir tr(n) := ‖Tr(n)‖ wohldefinieren.

Satz (von Turán): Für r, n ≥ 2 gilt:

EX(n,Kr+1) = {Tr(n)}

und damit ex(n,Kr+1) = tr(n).

Def. Bezeichne mit z(m,n; s, t) die maximale Anzahl der Kanten eines bipar-
titen Graphen G ⊆ Km,n, der keinen bipartiten Graphen F ⊆ Ks,t enthält.

Lemma: Seien m,n, s, t, k, r ∈ N0, (2, 2) ≤ (s, t) ≤ (m,n), 0 ≤ r < m und
G ⊆ Km,n ein bipartiter Graph der Größe z = my = km + r, der keinen Ks,t

enthält. Dann gilt:

m

(
y

t

)
≤ (m− r)

(
k

t

)
+ r

(
k + 1

t

)
≤ (s− 1)

(
n

t

)
Satz: Für alle natürlichen m,n, s, t gilt

z(m,n; s, t) ≤ (s− 1)1/t(n− t+ 1)m1−1/t + (t− 1)m

Satz: Für n ≥ 1 gilt

ex(n,K2,2) ≤ n

4
(1 +

√
4n− 3)
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4.2 Ramsey Theorie
Satz (von Ramsey - 1930): Für alle k, l ∈ N+ existiert ein n0 ∈ N, sodass
jeder Graph mit n ≥ n0 Ecken einen Kk oder K̄l enthält.

Def. Das kleinste n0, das obige Forderung erfüllt, heisst Ramsey-Zahl r(k, l).

Satz (Erdös und Szekeres - 1935): Für alle k, l ≥ 2 gilt

r(k, l) ≤ r(k,−1) + r(k − 1, l)

Satz (von Schur): Färbt man die natürlichen Zahlen mit endlich vielen Far-
ben, so enthält mindestens eine Farbklasse drei Zahlen x, y, z mit x+ y = z.

Def. Die (Graphen-)Ramsey-ZahlR(G1, . . . , Gk) ist die kleinste natürliche Zahl,
sodass jede k-Kantenfärbung eines Graphen mit ≥ R(G1, . . . , Gk) Ecken einen
Graphen Gi mit Farbe i für ein i liefert. R(G,G) heißt Ramsey-Zahl von G.

Satz (Chvátal - 1977): Für jeden Baum T mit n Ecken gilt:

R(T,Ks) = (n− 1)(s− 1) + 1

Ungelöstes Problem: These von Burr und Erdös 1976

R(T, T ) ≤ 2n− 2

4.3 Das Regularitätslemma
Def. Es ist

d(A,B) :=
‖A,B‖
|A||B|

∈ [0, 1]

die Dichte des Eckenpaares (A,B). Wobei wir mit ‖A,B‖ = ‖G[A,B]‖ die
Anzahl der A-B-Kanten in G bezeichnen.

Def. Für ein ε > 0 heisst (A,B) ε-regulär, wenn für alle A′ ⊆ A, B′ ⊆ B mit
(|A′|, |B′|) ≥ ε(|A|, |B|) gilt:

|d(A,B)− d(A′, B′)| ≤ ε

Eine Partition {V0, V1, . . . , Vk} von V mit Ausnahmemenge V0 heißt ε-reguläre
Partition, wenn gilt

i) |V0| ≤ ε|V |.

ii) |Vi| = |Vj | für i, j ∈ [k].

iii) Maximal εk2 Paare (Vi, Vj)1≤i<j≤k sind nicht ε-regulär.

Satz: Sei für ein ε > 0 (A,B) ε-regulär und d := d(A,B). Dann gilt für alle
B′ ⊆ B mit |B′| ≥ ε|B|, dass die Menge

A′ := {v ∈ A | |N(v) ∩B′| < (d− ε)|B′|}

weniger als ε|A| Elemente enthält. Das heisst mehr als ε|A| viele Elemente aus
A haben mehr als (d− ε)|B′| viele Nachbarn in B′.
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Satz (Slicing Lemma): Sei (A,B) ein ε-reguläres Paar, d := d(A,B). Für
α > ε, seien A′ ⊆ A, B′ ⊆ B mit |A′| ≥ α|A| und |B′| ≥ α|B|. Dann ist (A′, B′)
ein ε′-reguläres Paar mit e′ := max{ε/α, 2ε}.

Lemma (Regularitätslemma von Szemerédi - 1976): Für alle ε > 0 und
m ≥ 1 existiert einM und einN ∈ N, sodass sich alle Eckenmengen der Graphen
mit n ≥ N Ecken in die ε-reguläre Partition {V0, . . . , Vk} partitionieren lassen.
Dabei ist k aus [m,M ].

Satz (Szemerédi - 1975): Für alle natürlichen k ≥ 3 und ε > 0 existiert ein
n0 ∈ N, sodass für alle natürlichen n ≥ n0 gilt: Wenn A ⊆ {1, . . . , n} mit
|A| > εn, dann enthält A eine arithmetische Progression der Länge k.

Def. Zu gegebenem ε > 0, d ∈ [0, 1],m ∈ N und V1, . . . , Vk Partition einer
Eckenmenge V mit |Vi| = m konstruieren wir den Graphen R mit Eckenmenge
V1, . . . , Vk und Kanten zwischen Vi und Vj genau dann wenn (Vi, Vj) ein ε-
reguläres Paar mit Dichte ≥ d ist. R heißt Regularitätsgraph (Cluster/Reduced
Graph). Für ein s ∈ N entsteht Rs aus R in dem die Ecken durch s Ecken ersetzt
werden und vormals verbundene Ecken nach dieser Transformation vollständige
bipartite Graphen Ks,s werden.

Lemma (Einbettungslemma): ∀d ∈ (0, 1] und ∆ ≥ 1 existiert ein ε0 > 0,
sodass für einfache Graphen G und H mit ∆(H) ≤ ∆ gilt: Für den Regularitäts-
graphen R von G mit den Parametern ε ≤ ε0, m und d, sowie s ∈ N : m ≥ 2s

d∆ ,
dann folgt aus H ⊆ Rs dass H Teilgraph von G ist.

Satz (von Erdös & Stone - 1946): Zu jedem r ≥ 2, s ≥ 1 und ε > 0 mit
r, s ∈ N, existiert ein n0 ∈ N sodass alle Graphen mit n ≥ n0 Ecken und
≥ tr−1(n) + εn2 Kanten einen Ks

r .

Korollar: Für alle Graphen H mit mindestens einer Kante gilt

lim
n→∞

(
ex(n,H)

(
n

2

)−1)
=
χ(H)− 2

χ(H)− 1

Lemma: Der Turángraph T r−1(n) hat größenordnungmäßig n2 Kanten, denn
für alle n und r gilt:

tr−1(n) ≤ n2

2

r − 2

r − 1

Gleichheit gilt, wenn n ein Vielfaches von r − 1 ist.

Lemma: Es gilt

lim
n→∞

(
tr−1(n)

(
n

2

)−1)
=
r − 2

r − 1

Satz (Chvátal, Rödl, Szemerédi und Trotter - 1983): Für jeden Graph
G mit Maximalgrad ∆ gilt:

r(G,G) ≤ c(∆) · n
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4.4 Hamiltonsche Graphen
Satz: Sei G ein hamiltonischer Graph, dann gilt:

∀∅ 6= S ⊆ V : c(G \ S) ≤ |S|

Für c(G \ S) = |S| , ist jede der Komponenten von G \ S ein Hamiltonweg.

Def. Ein Graph G ist t-robust, falls t · c(G \ S) ≤ |S| (∀∅ 6= S ⊂ V ).

Def. Die Robustheit von G ist das maximale t, sodass G ist t-robust.

Def. Ein Graph G heisst hyperhamiltonisch, falls der Graph nicht hamiltonisch
ist, aber für alle v ∈ V ist G− v hypohamiltonisch.

Der Petersen-Graph ist hyperhamiltonisch und es existiert kein kleinerer hyper-
hamiltonischer Graph als der Petersen-Graph.

Satz (Dirac - 1952): Sei G einfach mit n ≥ 3, δ = δ(G) Für δ ≥ n
2 ⇒ G

hamiltonisch.

Korollar: Kn mit n ≥ 3 ist hamiltonisch.

Lemma (Ore - 1960): Sei G ein einfacher Graph und uv /∈ E(G) mit d(u) +
d(v) ≥ n. Dann ist G hamiltonisch gdw. G+ uv ist hamiltonisch.

Def. Sei G ein Graph. Seinen (hamiltonischen) Abschluss C(G) erhält man
durch hinzufügen von Kanten uv zwischen nicht benachbarten Ecken u und v
mit d(u) + d(v) ≥ n. Man fügt solange Kanten hinzu, bis es keine Eckenpaare
mehr gibt, die diese Bedingung erfüllen.

Satz (Bondy-Chvátal 1976): Sei G einfach. G ist hamiltonisch ⇔ der Ab-
schluss von G ist hamiltonisch.

Korollar: Sei G einfach n ≥ 3. Der Abschluss von G ist vollständig, dann ist
G hamiltonisch.

Satz (Chvátal - 1972): Sei G einfach mit Gradfolge d1 ≤ d2 ≤ . . . ≤ dn.
Wenn aus i < n

2 folgt ( di > i oder dn−i ≥ n− i ), dann ist G hamiltonisch.

Satz (Chvátal-Erdős - 1972): Sei G ein Graph mit n ≥ 3 Ecken und κ(G) ≥
λ(G), dann ist G hamiltonisch.
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Aufgaben
1. Zeige r(p, 2) = r(2, p) für p ∈ N.

2. Beim Bridge spielen immer zwei Teams mit je 2 Spielern gemeinsam eine
Partie.
In einem Bridge-Club gibt es nun folgende Regel: Vier Spieler dürfen nur
dann zusammen eine Partie spielen, wenn keine zwei von ihnen zuvor in
einem Team gewesen sind.
Bei einem Treffen dieses Bridge-Clubs kommen nun 14 Mitglieder zusam-
men, von denen jeder bei einem vorigen Treffen bereits mit genau fünf an-
deren Spielern in einem Team gewesen ist. Nach dem drei Partien gespielt
sind, kann auf Grund der Regel zunächst keine weitere Partie stattfinden.
Nun kommt jedoch ein 15-ter Spieler hinzu, mit dem zuvor keiner der An-
wesenden in einem Team gewesen ist.
Zeigen Sie, dass nun mindestens eine weitere Partie gespielt werden kann.

3. a) Sei G ein Graph mit Eckenmenge V , der keinen Kr+1 enthält. Zeige:
Es einen r-partiten Graphen H mit Eckenmenge V, so dass für jede
Ecke z ∈ V gilt:

dG(z) ≤ dH(z)

b) Folgere hieraus den Satz von Turan.
Hinweis: Induktion über r.
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Anhang
Bekannte Ramsey-Zahlen

R(p, q) 3 4 5 6 7 8 9
3 6 9 14 18 23 28 36
4 18 26

5


