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I Exakte Sequenzen

Definition 1 (Exakte Sequenzen). | ;
Eine Sequenz von R-Moduln ... — M;_; i> M; AAEY M; 1 — ... heisst
exakt in M;, falls im(f;) = ker(f;+1). Sie heisst exakt, wenn sie exakt in allen

Wir machen folgende Beobachtungen:

1. 0 — M L5 N exakt < f injektiv.

2. N L5 P — 0 exakt < ¢ surjektiv.

3.0 — M L N 4 P —5 0 exakt < f injektiv, g surjektiv und

im(f) = ker(g).

Diese Sequenzen nennt man auch kurze Sequenzen. Haben wir eine lange

exakte Sequenz ... — M,;_4 i> M; @) M;11 — ... gegeben, dann

kénnen wir mit N; := im(f;) = ker(f;;) fiir i« € N auch schreiben:

0 N; —— M, fog Nit1 0
Ein kleines Beispiel mit dem Ring der ganzen Zahlen:

0—2">2—%Zs, 0

mit f:x+— 5z, g:y+— Y. Diese Sequenz ist exakt.
Sei f ein Modulhomomorphismus von M nach N, dann induziert dieser ex-
akte Sequenzen:

0 ker f —— M im(f) ——=0

0 im f —— N —= coker(f) —=0

mit coker f := N/im £
Beispiel: Sei f : Z — Z, a — 4a, dann ist im(f) = 47Z und ker(f) = 0. Und
die induzierten Sequenzen sind:

0 0 Z 47 0
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0—42—=22—=2%7(22%7) —0

Satz 1 (Exakte Sequenzen setzen noethersche Moduln zusammen.).
Ist 0 — M' — M — M"” — 0 eine exakte Sequenzen, dann ist M genau
dann noethersch, wenn M’ und M"” noethersch sind.

BEWEIS
Siehe Vorlesung. n

Beispiel

0—>72CY PV

Weil Z noethersches Z-Modul = Z x Z noethersches Z Modul.

Definition 2 (Spaltende Sequenz).
Eine exakte Sequenz:

f g

0 M N P 0

spaltet, wenn im f ein direkter Summand von N ist, also 3/N;: mit

Satz 2 (Spaltende Sequenzen spalten Strukturen).
Spaltet eine exakte Sequenz

dann gilt

BEWEIS

Per Definition gilt N = N; @ im f. Da f injektiv ist, folgt M = im(f), also
N = N, & M.

Nun gilt Ny = N/im Iz im f = ker g und damit wegen des Homomorphiesat-
zes und der Surjektivitit von g:

N, = N/kerg ~im(g) = P -
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Beispiel:

g:b—4b

.7, favdyg posdby
0 V47 127, 737 0

Es ist
imszZ/lzz%Z/4Z:kerg

Chinesischer Restsatz: Z/12 7 = Z/3Z &) Z/4Z = im f ist ein direkter Sum-
mand von Z/12 7

Satz 3 (Spaltkriterien fiir exakte Sequenzen).

Sei 0 — M L5 N 25 P — 0 eine exakte Sequenz. Dann sind dquivalent
(a) Folge spaltet auf.
(b) Es gibt einen Modulhomomorphismus h: N — M mit ho f = Idy,.

(c) Es gibt einen Modulhomomorphismus k : P — N mit g o k = Idp.

BEWEIS
Bild zum Beweis:

0— ML NLop—s0
h k

(a) = (b): N =im f & N, = Es gibt einen Modulhomomorphismus 7 : N —
me mit ’/T‘imf = Idimf.
Definiere h : N — M durch h := ¢ o .

N —">im F
N
M
Dann gilt fiir alle m € M:

h(f(m)) = ¢(x(f(m)))) = &(f(m)) = m

(b) = (c¢): Definiere k : P — N durch: Zu p € P wihle n mit g(n) = p (g
surjektiv). Setze k(p) :=n — f(h(n)).

Das ist wohldefiniert: ny,ny so dass g(n;) = p = g(ng). Dann ist g(n; —
ng) = 0, also n := ny —ng € kerg = im f, also n = f(m) fiir ein m € M.

Dann ist n — f(h(n)) = f(m) = f(h(f(m)))) = f(m) = f(m) = 0. Also
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ny — f(h(n1)) = ny — f(h(nz)).
Modulhomomorphismus: Nachrechnen.
Bleibt zu zeigen: g o k = Idp: Fiir alle p € P gilt:

9(k(p)) = g(n — f(h(n))) = g(n) — g(f(h(n)))) = g(n) = p

(¢c) = (a): Es sei go k = Idp. Dann ist N = kerg 4+ imk, denn n = (n
K(g(n)))+k(g(n)) und g(n—k(g(n))) = g(n) — g(k(g(n)))) = g(n) —g(n) =
Aufberdem ker g Nim k = {0}, denn g(n) = 0 und n = k(p) = g(k(p)) =0
p=0=n=0. Daher N =kerg®im K.

Beispiel: Die folgende exakte Sequenz spaltet nicht:

L

0 27

z—"=>%s4, 0

Angenommen Sie spaltet, dann existiert ein h : Z — 27Z mit ho f =1dyz. h
muss von der Form h(x) = 2mu fiir ein m € Z mit m # 0 sein. Also

h(f(2) = h(z) = 2me — 2 < m = % ¢ 7\{0}

und das ist ein Widerspruch. Damit spaltet diese Sequenz nicht.

Satz 4 (Fiinferlemma).
Betrachten wir das folgende Diagramm. Mit M;, N; R-Moduln, f; Homomor-
phismen. Alles kommutiert und die Zeilen sind exakte Sequenzen:

u1 u2 us3 Usq

M, M, Ms3 M, M;
fi f2 f3 fa fs
Ny —— Ny —> N3 —> N; —— N;

Dann gilt:

1. Ist fi surjektiv und sind fs, f4 injektiv, dann ist f3 injektiv.
2. Ist f5 injektiv und sind fs, fy surjektiv, dann ist f3 surjektiv.

Insbesondere ist f3 ein Isomorphismus, wenn die anderen f; Isomorphismen
sind.
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BEWEIS
Am besten schaut man sich das Diagramm wihrend der Beweisfiihrung an:
1. Wir zeigen fiir mg € M3 mit f3(ms3) =0 = mg = 0.
Es gilt

0 =w3(f3(m3)) = fa(us(ms))
also uz(ms) € ker f; und da f; injektiv gilt us(ms) = 0. Damit ist mg €
ker ug = im uy, damit existiert ein mg € My : ug(msy) = mg. Und

0= f3(u2(m2)) = Ug(fg(mg)) = f2(m2) € ker vy = im vy

womit ein n; € N existiert mit vi(ny) = fo(msz). Nun ist f; surjektiv und
damit existiert ein m; € M mit f1(m;) = ny. Es gilt nun da f; injektiv ist:

uy(my) = f H(ui(filma))) = f5 ' (f2(m2)) = mo
und damit
Ug(ul<m1>) = ms3 = 0

weil im u; = ker ug. Damit ist ms = 0 und ker f3 = {0}, also ist f3 injektiv.
2. Wir miissen zeigen, dass f3 surjektiv ist.

Sei ng € N3. Setze ny = v3(ng). Weil f, surjektiv ist, existiert ein my € M,
mit fy(m4) = ny und da ny € imvz = ker vy ist, folgt

0 = vg(na) = va(fa(ma)) = f5(ua(ma))

also ug(my) € ker f5 und damit uy(my4) = 0. Damit ist my € ker ugy = imug
und es existiert ein ms € Mz mit uz(ms) = my.
Da das Diagramm kommutiert gilt:

v3(n3) = fa(uz(ms)) = v3(fs(ms))

und iiber die Linearitit ny — f3(ms) € ker vs = im vs.
Damit existiert ein 15 € Ny : v9(ne) = n3 — f3(mg). Da fy surjektiv Ims €
My @ fo(mg) = ng. Jetzt gilt aber wegen der Kommutativitit, dass

f3(ua(mz)) = va2(2) = ng — fa(ms) & ng = fs(uz(mg) — ms)

also n3 € im f3, aber das ist gerade die Surjektivitét. [

Satz 5 (Schlangenlemma).
Es gilt fiir M, M', M", N, N’', N R-Moduln und f, f’, f” Modulnhomomor-
phismen:
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u v

0—> M’ —“= M — M" —=0
f f f
0—> N —“= N —"= N"——=0

wobei die Zeilen exakt sind. Dann erhalten wir eine exakte Sequenz der Form

0 —> ker f/ —%>ker f —2>ker f" —%> coker f’ Lcokerf — coker ff—=0

Wobei @, v Restriktionen von u und v sind und #/,7’ von v/, v induzierte
Abbildungen sind.

BEWEIS
Der Beweis besteht aus vielen kleinen Teilen, am wichtigsten ist es dieses
Diagramm vor sich liegen zu haben:

0—=ker f' —%>ker f — > ker f -+~

0 M M M 0
f f f
0 N e N N 0

d i !
—=% coker f' —%— coker f —= coker f" —=()

Zuerst konstruieren wir d : ker f” — coker f’.
Wahle " € ker f” C M"”. Dann existiert wegen der Surjektivitdt von v ein
x € M mit v(x) = 2”. Jetzt gilt aber fiir dieses x

0= f"(a") = f'(v(x)) = V'(f())
womit f(z) € kerv' = imw’ ist. Also existiert ein ¢y € N, sodass u/(y) =
f(z). Setze nun d(z") := y/+im f’ € N//im p= coker f’. Anders geschrieben:

d=u""1o fov L
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Wir miissen noch zeigen, dass d wohldefiniert ist. Dazu erkennt man als
kritische Stelle die Uneindeutigkeit des gewéhlten x € M. Denn es kommen
alle x + kerv = x + imu in Frage. Also sei x € imwu. Dann existiert ein
2/ € M’ mit u(z') = 2z und es ist im ' 3 f'(z') = ' (f(u(z")) = ' (f(x))
eindeutig, da v’ injektiv. Damit ist aber auch das Bild eindeutig in coker ' =
N/
Vim f

Nun zeigen wir, dass d ein Homomorphismus ist. Seien dazu =,z € M",
dann existeren x1, zo, & mit v(z;) = x/ und v(z) = ¥ + 4. Dann gilt zum
einen

d(z) = v (f"(v(2)))) +im f’

und zum anderen

dlar) + d(ws) =v(f" (@) + v~ (f(2)) + im
—o ! (f(a) + F () + im f
—o ("} + ) + im f'

da v injektiv ist und v, f” Homomorphismen. Man sieht, dass man auch ein
r € R an z; multiplizieren hdtte kénnen und dies nichts gedndert hatte.
Jetzt zeigen wir, dass w und v wohldefiniert sind. Das ist fiir w erreicht, wenn
aus =’ € ker f’ folgt, dass u(z') € ker f, da wir dann u auf @ wohldefiniert
einschranken konnen. Also sei 2/ € ker f/, dann folgt:

0= f(2') =v ' (f(u(x))) = f(u(a') = 0= u(a') € ker f

Analog folgt fiir x € ker f

0=12'(f(2)) = f"(v(z))

also v(z) € ker f”.
Jetzt ist die Wohldefiniertheit von @’ und 7’ an der Reihe. Dabei setzen wir:

w(n +im f) :=u(n') +im f, ¥'(n 4+ im f) := v'(n) + im f” -

Sei nun nj —nb € im [’ es ist z. z. dass u/(ny — ny) € im f. Es existiert ein
m' € M': f'(m') = n} — n}, und nach der Kommutativitit des Diagrammes
gilt v'(ny —n2) = f(u(m')) = «'im f. Die Wohldefiniertheit von ¥’ verliauft
analog.

Nun miissen wir noch zeigen, dass diese Sequenz exakt ist. Das lassen wir
vorerst aus.
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II Kategorientheorie

Wir fiihren als erstes den Begriff einer Kategorie ein, welches den strukturel-
len Rahmen fiir dieses Kapitel definiert:

Definition 3 (Kategorie).
Eine Kategorie C besteht aus folgenden Daten:

e Eine Klasse! von Objekten Obj(C).

e Fiir alle A, B € Obj(C) eine Menge Mor¢ (A, B) von Morphismen (Pfei-
le). Fiir f € Mor¢(A, B) schreiben wir auch f : A — B und es ist
dom f = A und codom f = B.

e Fiir alle A, B,C € Obj(C) eine Kompositionsabbildung

More(A, B) x More(B, C) — More(A,C), (f,g9) = go f

Sodass folgendes gilt:
(C1) Die Kompositionsabbildung ist immer assoziativ.

(C2) Morc(A,B) N More(A',B") # 0 = (A,B) = (A, B’) fir Objekte
A A.B.B.

(C3) Fiir alle Objekte A € Obj(C) haben wir ein Id4 € More(A, A). Sodass
Idsop = ¢ mit codom¢ = A und @ oldy = ¢ wenn domp = A ist.
Wobei ¢ ein Pfeil ist.

Diese Definition ist etwas abstrakt, daher einige Beispiele:

Die Kategorie der Mengen Set: Hier sind die Objekte Mengen, die Morphis-
men Abbildungen und die {ibliche Komposition wird verwendet. Genauso
bilden algebraische Strukturen (Gruppe,Ringe,Korper) als Objekte zusam-
men mit ihren Homomorphismen als Pfeile Kategorien, darunter fillt auch
die fiir uns wichtige Kategorie der R-Moduln, genannt R-Mod. Analog kann
man dies mit Metrischen/Topologischen Rdumen und stetigen Abbildungen
tun.

Ein abstrakteres Beispiel: Wir haben ein Poset (X, <) gegeben. Dann kon-
struieren wir daraus eine Kategorie C mit Obj(C) = X und Mor(a,b) # 0

!Man sollte sich an diesen Begriff nicht stéren, aber realisieren dass hier keine Menge
vorliegt.
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genau dann wenn a < b fiir alle a,b € X?. Die Komposition ist aufgrund der
Transitivitat von < moglich, die Identitdt existiert wegen der Reflexivitit.
Im folgendem sei C eine beliebige Kategorie.

Definition 4 (Isomorphismen, Automorphismengruppe).

f € Morc(A, B) fiir A, B € Obj(C) heikt Isomorphismus, wenn es ein ¢
(= f~! genannt) aus Morc(B, A) gibt, sodass gf = Id4 sowie fg = Idp gilt.
Es heisst

Aut(A) = {f € Mor¢(A, A) | f Isomorphismus } (A € ObjC), (1)

Automorphismengruppe.

Wir kommen nun zu den strukturerhaltenden "Abbildungen’ zwischen Kate-
gorien:

Definition 5 (kovarianter Funktor).
Fiir Kategorien C,D heisst F' : C — D kovarianter Funktor, welcher durch
folgende Daten gegeben ist:

1. Eine Zuordnung Obj(C) — Obj(D), A — F' A der Objekte der Katego-

rien.

2. Eine Zuordnung Mor¢(A, B) — Morp(F A, FB) von Pfeilen mit A, B €
Obj(C). Welche folgende Eigenschaften Erfiillt:

F(fg)=FgoFf (2)

und
Fldg =1Idpa (VA € Obj(A)) (3)

Beispiel: Von R-Moduln zu Quot(R)-Vektorrdumen (Austausch des zugrun-
deliegenden Integritédtsbereich). Allgemeiner: Lokalisierung von R-Moduln zu
R[U~Y-Moduln fiir multiplikativ abgeschlossene Mengen U (Komplemente
von Primidealen sind multiplikativ abgeschlossen per Definition). Der Ver-
gissfunktor: Er vergisst die Struktur und bildet in Set ab.

2Es sollen am besten entweder kein oder ein Pfeil in einer Morphismenge existieren.
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Definition 6 (duale Kategorie, kontravarianter Funktor).

Wir nennen C? die duale Kategorie von C. Sie verfiigt iiber die selben Objekte
nur werden die Pfeile umgedreht. Das heisst Morc(A, B) = Moreo» (B, A) fiir
alle A, B € Obj(C). Ein kovarianter Funktor von C°? nach einer Kategorie D
nennt man kontravarianter Funktor von C.

Beide Konzepte lassen sich in Bilder fassen:

¢ty
F(gf)=FgFf

Kovariant Cq T Ca Ty Cs
F(gf)=FfFg

Kontravariant FC, m FCs

In der Kategorie der K-Vektorrdume kann man das dualisieren V' +— V* und
f — f* als kontravarianten Funktor auffassen. Oder auch: Spec: Spektrum
von Ringen betrachten und die von Spec induzierten stetigen Abbildungen.

IIT Hom-Funktor

Wir verkniipfen den Begriff der Funktoren mit den der spaltenden Sequenzen.
Dabei betrachten wir nun die Kategorie der R-Moduln. Wir kénnen diese
Definitionen aber auch allgemeiner fiir abelsche Kategorien fassen:

Definition 7 (exakte Funktoren).

Sei F' ein Funktor auf R-Mod.

linksexakt, wenn die exakte Sequenz 0 — M’ — M — M" nach An-
wendung von F' exakt bleibt.

rechtsexakt, wenn die exakte Sequenz M’ — M — M"” — 0 nach An-
wendung von F' exakt bleibt.

exakt, wenn die exakte Sequenz 0 — M’ — M — M"” — 0 nach An-
wendung von F' exakt bleibt, d.h. wenn er rechts- und linksexakt ist.

Im folgendem betrachten wir die Kategorie C der R-Moduln mit den R-
Modulhomomorphismen. Und setzen als Funktor in dieser Kategorie Hompg (M, —).
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Satz 6 (kovarianter Hom-Funktor).
F := Hompg(M, —) ist ein kovarianter Funktor.

BEWEIS

Der Funktor ist so definiert, wie man es sich denkt. Moduln N wird Hompg(M, N)
zugeordnet. Und fiir f € Mor(Ny, No) = Hompg(Ny, No) wird F'f : Homg(M, N;) —
Hompg(M, Ny), ¢ — f¢. Jetzt haben wir zum einen:

F(ldy)(¢) = ldyop = ¢

fir ¢ € FN = Homg(M, N). Und zum anderen fiir f : Ny — Ny, g : Ny —
N3 sowie gb S HOIHR(Nl, N3)I

(Fgo Ff)(¢) = (Fg)(fod)=go(fod)=(gof)od=F(gof)(¢)

womit wir erstens F'(Idy) = Idpy und zweitens F(go f) = Fgo F f gezeigt
haben, also gerade die Eigenschaften eines kovarianten Funktors. [

Satz 7 (Hom(M, —) ist linksexakt).
Ist 0 — Ny — N — Nj exakt, dann ist 0 — Hom(M,N;) —
Hom(M, Ny) — Hom(M, N3) exakt. Das heisst Hom(M, —) ist linksexakt.

BEWEIS
Ohne Beweis. -

Schlussendlich wollen wir charakterisieren, wann Hom(M, —) gar exakt ist.
Dazu benoétigen wir folgenden Begriff

Definition 8 (Projektive Moduln).

Ein Modul P heisst projektiv, wenn fiir alle «« : M - N, 3 : P - N
Modulhomomorphismen eine Abbildung v : P — M existiert, sodass § = a,
also das Diagramm

o,

M——N
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Anschaulich kann man Homomorphismen, welche von projektiven Moduln
ausgehen, 'unter’ Epimorphismen zuriickziehen.

Satz 8 (Charakterisierungssatz projektiver Moduln).
Sei P ein R-Modul, folgende Aussagen sind dann dquivalent:

a) P ist projektiv.

b) Fiir jeden Epimorphismus o : M — N ist die induzierte Abbildung
Hom(P, —)a : Hom(P, M) — Hom(P, N) surjektiv. D. h. Hom(P, —)
ist rechtsexakt.

¢) Fiir ein Epimorphismus 8 : F' — P und freiem Modul F, ist die indu-
zierte Abbildung Hom(P, —)f surjektiv.

d) P ist ein direkter Summand eines freien Moduls.

e) Jeder Epimorphismus « : M — P spaltet, d. h. es gibt ein 5 : P — M,
sodass a8 = Idp.

BEWEIS

a) < b): Einfache Umformulierung der ’Zuriickzieheigenschaft’.

b) = c¢): Spezialfall.

c) = d): Es existiert ein §: F — P (F = @pepR im Extremfall) mit freiem
F. Damit greift aber die Voraussetzung und es existiert ein o : P — F' mit
Idp = Ba. Damit spaltet aber die exakte Sequenz nach Satz 3

0——kerf4op Pop g

0und F'= P @ ker 3.
d) = b): Wir kénnen F' = P @ N, mit F frei schreiben. Es gilt nun

Hom(F, —) = Hom(P & N, —) = Hom(P, —) ® Hom(N,, —)

damit reicht es, dass fiir & : M — N die induzierte Abbildung Hom(F, M) —
Hom(F, N) surjektiv ist. Das gilt aber, da wir die Bilder unter eines f €
Hom(F, N) unter einem Erzeugendensystem von F' mit « zuriickziehen kon-
nen.

Es fehlt nur noch die Aquivalenz zu e):

e) = d): Wieder nach Satz 3.

a) = e): Direktes anwenden der Definition:
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s
[

-
—
o

5

o

Korollar 1.
Exakte Sequenzen

0 N M P 0

spalten genau dann wenn P projektiv ist und das genau dann wenn Hom(P, —)
exakt ist.

Satz 9 (Freie vs projektive Moduln).
Freie Moduln sind immer projektiv. Projektive Moduln iiber lokale oder
Hauptidealringe sind frei.

BEWEIS
Ohne Beweis. =

Bemerkung: Man kann auch den kontravarianten Funktor F' := Hom(—, N)
betrachten. Dieser ist immer linksexakt und exakt gdw. N ein sogenannter
injektiver Modul ist. Dies ist der duale Begriff zur Projektivitét.
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