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I Exakte Sequenzen

De�nition 1 (Exakte Sequenzen).
Eine Sequenz von R-Moduln . . . −→ Mi−1

fi−→ Mi
fi+1−→ Mi+1 −→ . . . heisst

exakt in Mi, falls im(fi) = ker(fi+1). Sie heisst exakt, wenn sie exakt in allen
Mi ist.

Wir machen folgende Beobachtungen:

1. 0 −→M
f−→ N exakt ⇔ f injektiv.

2. N
g−→ P −→ 0 exakt ⇔ g surjektiv.

3. 0 −→ M
f−→ N

g−→ P −→ 0 exakt ⇔ f injektiv, g surjektiv und
im(f) = ker(g).

Diese Sequenzen nennt man auch kurze Sequenzen. Haben wir eine lange

exakte Sequenz . . . −→ Mi−1
fi−→ Mi

fi+1−→ Mi+1 −→ . . . gegeben, dann
können wir mit Ni := im(fi) = ker(fi+1) für i ∈ N auch schreiben:

0 // Ni
ι // Mi

fi+1 // Ni+1
// 0

Ein kleines Beispiel mit dem Ring der ganzen Zahlen:

0 // Z
f // Z

g // Z�5Z
// 0

mit f : x 7→ 5x, g : y 7→ y. Diese Sequenz ist exakt.
Sei f ein Modulhomomorphismus von M nach N , dann induziert dieser ex-
akte Sequenzen:

0 // ker f ι // M
f // im(f) // 0

0 // im f
ι // N

π // coker(f) // 0

mit coker f := N�im f .
Beispiel: Sei f : Z → Z, a 7→ 4a, dann ist im(f) = 4Z und ker(f) = 0. Und
die induzierten Sequenzen sind:

0 // 0 // Z // 4Z // 0
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0 // 4Z // 2Z // 2Z�4Z
(
∼= Z�2Z

)
// 0

Satz 1 (Exakte Sequenzen setzen noethersche Moduln zusammen.).
Ist 0 −→M ′ −→M −→M ′′ −→ 0 eine exakte Sequenzen, dann istM genau
dann noethersch, wenn M ′ und M ′′ noethersch sind.

Beweis

Siehe Vorlesung.

Beispiel

0 // Z
a7→(a,0)// Z×Z

(x,y)7→y // Z // 0

Weil Z noethersches Z-Modul ⇒ Z×Z noethersches Z Modul.

De�nition 2 (Spaltende Sequenz).
Eine exakte Sequenz:

0 // M
f // N

g // P // 0

spaltet, wenn im f ein direkter Summand von N ist, also ∃N1: mit

N = im f ⊕N1

Satz 2 (Spaltende Sequenzen spalten Strukturen).
Spaltet eine exakte Sequenz

0 // M
f // N

g // P // 0

dann gilt
N ∼= M ⊕ P.

Beweis

Per De�nition gilt N ∼= N1 ⊕ im f . Da f injektiv ist, folgt M ∼= im(f), also
N ∼= N1 ⊕M .
Nun gilt N1

∼= N�im f , im f = ker g und damit wegen des Homomorphiesat-
zes und der Surjektivität von g:

N1
∼= N�ker g ∼= im(g) = P
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Beispiel:

0 // Z�4Z
f :a7→3a// Z�12Z

g:b7→4b // Z�3Z
// 0

Es ist
im f = 3Z�12Z ∼=

Z�4Z = ker g

Chinesischer Restsatz: Z�12Z ∼=
Z�3Z⊕

Z�4Z⇒ im f ist ein direkter Sum-

mand von Z�12Z.

Satz 3 (Spaltkriterien für exakte Sequenzen).
Sei 0 −→M

f−→ N
g−→ P −→ 0 eine exakte Sequenz. Dann sind äquivalent

(a) Folge spaltet auf.

(b) Es gibt einen Modulhomomorphismus h : N →M mit h ◦ f = IdM .

(c) Es gibt einen Modulhomomorphismus k : P → N mit g ◦ k = IdP .

Beweis

Bild zum Beweis:

0 // M
f // N
h

jj
g // P //

k

ii 0

(a)⇒ (b): N = im f ⊕N! ⇒ Es gibt einen Modulhomomorphismus π : N →
imf mit π|im f = Idim f .
De�niere h : N →M durch h := φ ◦ π.

N
π //

h

""EEEEEEEE imF

φ

��
M

Dann gilt für alle m ∈M :

h(f(m)) = φ(π(f(m)))) = φ(f(m)) = m

(b) ⇒ (c): De�niere k : P → N durch: Zu p ∈ P wähle n mit g(n) = p (g
surjektiv). Setze k(p) := n− f(h(n)).
Das ist wohlde�niert: n1, n2 so dass g(n1) = p = g(n2). Dann ist g(n1 −
n2) = 0, also n := n1 − n2 ∈ ker g = im f , also n = f(m) für ein m ∈ M .
Dann ist n − f(h(n)) = f(m) − f(h(f(m)))) = f(m) − f(m) = 0. Also
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n1 − f(h(n1)) = n2 − f(h(n2)).
Modulhomomorphismus: Nachrechnen.
Bleibt zu zeigen: g ◦ k = IdP : Für alle p ∈ P gilt:

g(k(p)) = g(n− f(h(n))) = g(n)− g(f(h(n)))) = g(n) = p

(c) ⇒ (a): Es sei g ◦ k = IdP . Dann ist N = ker g + im k, denn n = (n −
k(g(n)))+k(g(n)) und g(n−k(g(n))) = g(n)−g(k(g(n)))) = g(n)−g(n) = 0.
Auÿerdem ker g ∩ im k = {0}, denn g(n) = 0 und n = k(p)⇒ g(k(p)) = 0⇒
p = 0⇒ n = 0. Daher N = ker g ⊕ imK.

Beispiel: Die folgende exakte Sequenz spaltet nicht:

0 // 2Z ι // Z π // Z�2Z
// 0

Angenommen Sie spaltet, dann existiert ein h : Z→ 2Z mit h ◦ f = Id2Z. h
muss von der Form h(x) = 2mx für ein m ∈ Z mit m 6= 0 sein. Also

h(f(x)) = h(x) = 2mx = x⇔ m =
1

2
/∈ Z \{0}

und das ist ein Widerspruch. Damit spaltet diese Sequenz nicht.

Satz 4 (Fünferlemma).
Betrachten wir das folgende Diagramm. MitMi, Ni R-Moduln, fi Homomor-
phismen. Alles kommutiert und die Zeilen sind exakte Sequenzen:

M1
u1 //

f1

��

M2
u2 //

f2

��

M3
u3 //

f3

��

M4
u4 //

f4

��

M5

f5

��
N1

v1 // N2
v2 // N3

v3 // N4
v4 // N5

Dann gilt:

1. Ist f1 surjektiv und sind f2, f4 injektiv, dann ist f3 injektiv.

2. Ist f5 injektiv und sind f2, f4 surjektiv, dann ist f3 surjektiv.

Insbesondere ist f3 ein Isomorphismus, wenn die anderen fi Isomorphismen
sind.
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Beweis

Am besten schaut man sich das Diagramm während der Beweisführung an:
1. Wir zeigen für m3 ∈M3 mit f3(m3) = 0⇒ m3 = 0.
Es gilt

0 = v3(f3(m3)) = f4(u3(m3))

also u3(m3) ∈ ker f4 und da f4 injektiv gilt u3(m3) = 0. Damit ist m3 ∈
keru3 = imu2, damit existiert ein m2 ∈M2 : u2(m2) = m3. Und

0 = f3(u2(m2)) = v2(f2(m2))⇒ f2(m2) ∈ ker v2 = im v1

womit ein n1 ∈ N1 existiert mit v1(n1) = f2(m2). Nun ist f1 surjektiv und
damit existiert ein m1 ∈M1 mit f1(m1) = n1. Es gilt nun da f2 injektiv ist:

u1(m1) = f−12 (v1(f1(m1))) = f−12 (f2(m2)) = m2

und damit
u2(u1(m1)) = m3 = 0

weil imu1 = keru2. Damit ist m3 = 0 und ker f3 = {0}, also ist f3 injektiv.
2. Wir müssen zeigen, dass f3 surjektiv ist.
Sei n3 ∈ N3. Setze n4 = v3(n3). Weil f4 surjektiv ist, existiert ein m4 ∈ M4

mit f4(m4) = n4 und da n4 ∈ im v3 = ker v4 ist, folgt

0 = v4(n4) = v4(f4(m4)) = f5(u4(m4))

also u4(m4) ∈ ker f5 und damit u4(m4) = 0. Damit ist m4 ∈ keru4 = imu3
und es existiert ein m3 ∈M3 mit u3(m3) = m4.
Da das Diagramm kommutiert gilt:

v3(n3) = f4(u3(m3)) = v3(f3(m3))

und über die Linearität n3 − f3(m3) ∈ ker v3 = im v2.
Damit existiert ein n̂2 ∈ N2 : v2(n̂2) = n3 − f3(m3). Da f2 surjektiv ∃m̂2 ∈
M2 : f2(m̂2) = n̂2. Jetzt gilt aber wegen der Kommutativität, dass

f3(u2(m̂2)) = v2(n̂2) = n3 − f3(m3)⇔ n3 = f3(u2(m̂2)−m3)

also n3 ∈ im f3, aber das ist gerade die Surjektivität.

Satz 5 (Schlangenlemma).
Es gilt für M,M ′,M ′′, N,N ′, N ′′ R-Moduln und f, f ′, f ′′ Modulnhomomor-
phismen:
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0 // M ′

f ′

��

u // M

f

��

v // M ′′

f ′′

��

// 0

0 // N ′
u′ // N

v′ // N ′′ // 0

wobei die Zeilen exakt sind. Dann erhalten wir eine exakte Sequenz der Form

0 // ker f ′
u // ker f v // ker f ′′

d // coker f ′
u′ // coker f v′ // coker f ′ // 0

Wobei u, v Restriktionen von u und v sind und v′, u′ von u′, v′ induzierte
Abbildungen sind.

Beweis

Der Beweis besteht aus vielen kleinen Teilen, am wichtigsten ist es dieses
Diagramm vor sich liegen zu haben:

0 // ker f ′
u //

��

ker f v //

��

ker f ′′

��

d //

0 // M ′

f ′

��

u // M

f

��

v // M ′′

f ′′

��

// 0

0 // N ′
u′ // N

v′ // N ′′ // 0

d // coker f ′
u′ //

OO

coker f v′ //

OO

coker f ′′

OO

// 0

Zuerst konstruieren wir d : ker f ′′ → coker f ′.
Wähle x′′ ∈ ker f ′′ ⊆ M ′′. Dann existiert wegen der Surjektivität von v ein
x ∈M mit v(x) = x′′. Jetzt gilt aber für dieses x

0 = f ′′(x′′) = f ′′(v(x)) = v′(f(x))

womit f(x) ∈ ker v′ = imu′ ist. Also existiert ein y′ ∈ N ′, sodass u′(y) =

f(x). Setze nun d(x′′) := y′+im f ′ ∈ N
′
�im f ′ = coker f ′. Anders geschrieben:

d = u′−1 ◦ f ◦ v−1.
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Wir müssen noch zeigen, dass d wohlde�niert ist. Dazu erkennt man als
kritische Stelle die Uneindeutigkeit des gewählten x ∈ M . Denn es kommen
alle x + ker v = x + imu in Frage. Also sei x ∈ imu. Dann existiert ein
x′ ∈M ′ mit u(x′) = x und es ist im f ′ 3 f ′(x′) = u−1(f(u(x′))) = u′−1(f(x))
eindeutig, da u′ injektiv. Damit ist aber auch das Bild eindeutig in coker f ′ =
N ′�im f ′.
Nun zeigen wir, dass d ein Homomorphismus ist. Seien dazu x′′1, x

′′
2 ∈ M ′′,

dann existeren x1, x2, x̂ mit v(xi) = x′′i und v(x̂) = x′′1 + x′′2. Dann gilt zum
einen

d(x̂) = v′−1(f ′′(v(x̂)))) + im f ′

und zum anderen

d(x1) + d(x2) =v
−1(f ′′(x′′1)) + v−1(f ′′(x′′2)) + im f ′

=v−1(f ′′(x′′1) + f ′′(x′′2)) + im f ′

=v−1(f ′′(x′′1 + x′′2)) + im f ′

da v injektiv ist und v, f ′′ Homomorphismen. Man sieht, dass man auch ein
r ∈ R an x1 multiplizieren hätte können und dies nichts geändert hätte.
Jetzt zeigen wir, dass u und v wohlde�niert sind. Das ist für u erreicht, wenn
aus x′ ∈ ker f ′ folgt, dass u(x′) ∈ ker f , da wir dann u auf u wohlde�niert
einschränken können. Also sei x′ ∈ ker f ′, dann folgt:

0 = f ′(x′) = v−1(f(u(x′)))⇒ f(u(x′)) = 0⇒ u(x′) ∈ ker f

Analog folgt für x ∈ ker f

0 = v′(f(x)) = f ′′(v(x))

also v(x) ∈ ker f ′′.
Jetzt ist die Wohlde�niertheit von u′ und v′ an der Reihe. Dabei setzen wir:

u′(n′ + im f ′) := u(n′) + im f, v′(n+ im f) := v′(n) + im f ′′

Sei nun n′1 − n′2 ∈ im f ′ es ist z. z. dass u′(n1 − n2) ∈ im f . Es existiert ein
m′ ∈ M ′ : f ′(m′) = n′1 − n′2 und nach der Kommutativität des Diagrammes
gilt u′(n1 − n2) = f(u(m′)) ⇒ u′ im f . Die Wohlde�niertheit von v′ verläuft
analog.
Nun müssen wir noch zeigen, dass diese Sequenz exakt ist. Das lassen wir
vorerst aus.
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II Kategorientheorie

Wir führen als erstes den Begri� einer Kategorie ein, welches den strukturel-
len Rahmen für dieses Kapitel de�niert:

De�nition 3 (Kategorie).
Eine Kategorie C besteht aus folgenden Daten:

• Eine Klasse1 von Objekten Obj(C).

• Für alle A,B ∈ Obj(C) eine Menge MorC(A,B) von Morphismen (Pfei-
le). Für f ∈ MorC(A,B) schreiben wir auch f : A → B und es ist
dom f = A und codom f = B.

• Für alle A,B,C ∈ Obj(C) eine Kompositionsabbildung

MorC(A,B)×MorC(B,C)→ MorC(A,C), (f, g) 7→ g ◦ f

Sodass folgendes gilt:

(C1) Die Kompositionsabbildung ist immer assoziativ.

(C2) MorC(A,B) ∩ MorC(A
′, B′) 6= ∅ ⇒ (A,B) = (A′, B′) für Objekte

A,A′, B,B′.

(C3) Für alle Objekte A ∈ Obj(C) haben wir ein IdA ∈ MorC(A,A). Sodass
IdA ◦ϕ = ϕ mit codomφ = A und ϕ ◦ IdA = ϕ wenn domϕ = A ist.
Wobei ϕ ein Pfeil ist.

Diese De�nition ist etwas abstrakt, daher einige Beispiele:
Die Kategorie der Mengen Set: Hier sind die Objekte Mengen, die Morphis-
men Abbildungen und die übliche Komposition wird verwendet. Genauso
bilden algebraische Strukturen (Gruppe,Ringe,Körper) als Objekte zusam-
men mit ihren Homomorphismen als Pfeile Kategorien, darunter fällt auch
die für uns wichtige Kategorie der R-Moduln, genannt R-Mod. Analog kann
man dies mit Metrischen/Topologischen Räumen und stetigen Abbildungen
tun.
Ein abstrakteres Beispiel: Wir haben ein Poset (X,≤) gegeben. Dann kon-
struieren wir daraus eine Kategorie C mit Obj(C) = X und Mor(a, b) 6= ∅

1Man sollte sich an diesen Begri� nicht stören, aber realisieren dass hier keine Menge

vorliegt.
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genau dann wenn a ≤ b für alle a, b ∈ X2. Die Komposition ist aufgrund der
Transitivität von ≤ möglich, die Identität existiert wegen der Re�exivität.
Im folgendem sei C eine beliebige Kategorie.

De�nition 4 (Isomorphismen, Automorphismengruppe).
f ∈ MorC(A,B) für A,B ∈ Obj(C) heiÿt Isomorphismus, wenn es ein g
(= f−1 genannt) aus MorC(B,A) gibt, sodass gf = IdA sowie fg = IdB gilt.
Es heisst

Aut(A) = {f ∈ MorC(A,A) | f Isomorphismus } (A ∈ Obj C), (1)

Automorphismengruppe.

Wir kommen nun zu den strukturerhaltenden 'Abbildungen' zwischen Kate-
gorien:

De�nition 5 (kovarianter Funktor).
Für Kategorien C,D heisst F : C → D kovarianter Funktor, welcher durch
folgende Daten gegeben ist:

1. Eine Zuordnung Obj(C)→ Obj(D), A 7→ FA der Objekte der Katego-
rien.

2. Eine ZuordnungMorC(A,B)→ MorD(FA, FB) von Pfeilen mit A,B ∈
Obj(C). Welche folgende Eigenschaften Erfüllt:

F (fg) = Fg ◦ Ff (2)

und
F IdA = IdFA (∀A ∈ Obj(A)) (3)

Beispiel: Von R-Moduln zu Quot(R)-Vektorräumen (Austausch des zugrun-
deliegenden Integritätsbereich). Allgemeiner: Lokalisierung von R-Moduln zu
R[U−1]-Moduln für multiplikativ abgeschlossene Mengen U (Komplemente
von Primidealen sind multiplikativ abgeschlossen per De�nition). Der Ver-
gissfunktor: Er vergisst die Struktur und bildet in Set ab.

2Es sollen am besten entweder kein oder ein Pfeil in einer Morphismenge existieren.
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De�nition 6 (duale Kategorie, kontravarianter Funktor).
Wir nennen Cop die duale Kategorie von C. Sie verfügt über die selben Objekte
nur werden die Pfeile umgedreht. Das heisst MorC(A,B) = MorCop(B,A) für
alle A,B ∈ Obj(C). Ein kovarianter Funktor von Cop nach einer Kategorie D
nennt man kontravarianter Funktor von C.

Beide Konzepte lassen sich in Bilder fassen:

C1
f // C2

g // C3

Kovariant C1 Ff
//

F (gf)=FgFf
,,C2 Fg
// C3

Kontravariant FC1 FC2Ff
oo FC3Fg

oo
F (gf)=FfFg

rr

In der Kategorie der K-Vektorräume kann man das dualisieren V 7→ V ∗ und
f 7→ f ∗ als kontravarianten Funktor au�assen. Oder auch: Spec: Spektrum
von Ringen betrachten und die von Spec induzierten stetigen Abbildungen.

III Hom-Funktor

Wir verknüpfen den Begri� der Funktoren mit den der spaltenden Sequenzen.
Dabei betrachten wir nun die Kategorie der R-Moduln. Wir können diese
De�nitionen aber auch allgemeiner für abelsche Kategorien fassen:

De�nition 7 (exakte Funktoren).
Sei F ein Funktor auf R-Mod.
linksexakt, wenn die exakte Sequenz 0 −→ M ′ −→ M −→ M ′′ nach An-
wendung von F exakt bleibt.
rechtsexakt, wenn die exakte Sequenz M ′ −→ M −→ M ′′ −→ 0 nach An-
wendung von F exakt bleibt.
exakt, wenn die exakte Sequenz 0 −→ M ′ −→ M −→ M ′′ −→ 0 nach An-
wendung von F exakt bleibt, d.h. wenn er rechts- und linksexakt ist.

Im folgendem betrachten wir die Kategorie C der R-Moduln mit den R-
Modulhomomorphismen. Und setzen als Funktor in dieser KategorieHomR(M,−).
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Satz 6 (kovarianter Hom-Funktor).
F := HomR(M,−) ist ein kovarianter Funktor.

Beweis

Der Funktor ist so de�niert, wie man es sich denkt. ModulnN wirdHomR(M,N)
zugeordnet. Und für f ∈ Mor(N1, N2) = HomR(N1, N2) wird Ff : HomR(M,N1)→
HomR(M,N2), φ 7→ fφ. Jetzt haben wir zum einen:

F (IdN)(φ) = IdN ◦φ = φ

für φ ∈ FN = HomR(M,N). Und zum anderen für f : N1 → N2, g : N2 →
N3 sowie φ ∈ HomR(N1, N3):

(Fg ◦ Ff)(φ) = (Fg)(f ◦ φ) = g ◦ (f ◦ φ) = (g ◦ f) ◦ φ = F (g ◦ f)(φ)

womit wir erstens F (IdN) = IdFN und zweitens F (g ◦ f) = Fg ◦ Ff gezeigt
haben, also gerade die Eigenschaften eines kovarianten Funktors.

Satz 7 (Hom(M,−) ist linksexakt).
Ist 0 −→ N1 −→ N2 −→ N3 exakt, dann ist 0 −→ Hom(M,N1) −→
Hom(M,N2) −→ Hom(M,N3) exakt. Das heisst Hom(M,−) ist linksexakt.

Beweis

Ohne Beweis.

Schlussendlich wollen wir charakterisieren, wann Hom(M,−) gar exakt ist.
Dazu benötigen wir folgenden Begri�

De�nition 8 (Projektive Moduln).
Ein Modul P heisst projektiv, wenn für alle α : M � N, β : P → N
Modulhomomorphismen eine Abbildung γ : P →M existiert, sodass β = αγ,
also das Diagramm

P
∃γ

~~||
||

||
||

β
��

M
α // N
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Anschaulich kann man Homomorphismen, welche von projektiven Moduln
ausgehen, 'unter' Epimorphismen zurückziehen.

Satz 8 (Charakterisierungssatz projektiver Moduln).
Sei P ein R-Modul, folgende Aussagen sind dann äquivalent:

a) P ist projektiv.

b) Für jeden Epimorphismus α : M � N ist die induzierte Abbildung
Hom(P,−)α : Hom(P,M) → Hom(P,N) surjektiv. D. h. Hom(P,−)
ist rechtsexakt.

c) Für ein Epimorphismus β : F � P und freiem Modul F , ist die indu-
zierte Abbildung Hom(P,−)β surjektiv.

d) P ist ein direkter Summand eines freien Moduls.

e) Jeder Epimorphismus α :M � P spaltet, d. h. es gibt ein β : P →M ,
sodass αβ = IdP .

Beweis

a)⇔ b): Einfache Umformulierung der 'Zurückzieheigenschaft'.
b)⇒ c): Spezialfall.
c)⇒ d): Es existiert ein β : F � P (F = ⊕p∈PR im Extremfall) mit freiem
F . Damit greift aber die Voraussetzung und es existiert ein α : P → F mit
IdP = βα. Damit spaltet aber die exakte Sequenz nach Satz 3

0 // ker β Id // F
β // P // 0

0 und F = P ⊕ ker β.
d)⇒ b): Wir können F = P ⊕N2 mit F frei schreiben. Es gilt nun

Hom(F,−) = Hom(P ⊕N2,−) = Hom(P,−)⊕ Hom(N2,−)

damit reicht es, dass für α :M � N die induzierte Abbildung Hom(F,M)→
Hom(F,N) surjektiv ist. Das gilt aber, da wir die Bilder unter eines f ∈
Hom(F,N) unter einem Erzeugendensystem von F mit α zurückziehen kön-
nen.
Es fehlt nur noch die Äquivalenz zu e):
e)⇒ d): Wieder nach Satz 3.
a)⇒ e): Direktes anwenden der De�nition:
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P
∃β

~~}}
}}

}}
}}

IdP
��

M
α // P

Korollar 1.
Exakte Sequenzen

0 // N // M // P // 0

spalten genau dann wenn P projektiv ist und das genau dann wennHom(P,−)
exakt ist.

Satz 9 (Freie vs projektive Moduln).
Freie Moduln sind immer projektiv. Projektive Moduln über lokale oder
Hauptidealringe sind frei.

Beweis

Ohne Beweis.

Bemerkung: Man kann auch den kontravarianten Funktor F := Hom(−, N)
betrachten. Dieser ist immer linksexakt und exakt gdw. N ein sogenannter
injektiver Modul ist. Dies ist der duale Begri� zur Projektivität.



Exakte Sequenzen und Hom 15

Satzverzeichnis
De�nition 1 Exakte Sequenzen 2
Satz 1 Exakte Sequenzen setzen noethersche Moduln zusammen. 3
De�nition 2 Spaltende Sequenz 3
Satz 2 Spaltende Sequenzen spalten Strukturen 3
Satz 3 Spaltkriterien für exakte Sequenzen 4
Satz 4 Fünferlemma 5
Satz 5 Schlangenlemma 6
De�nition 3 Kategorie 9
De�nition 4 Isomorphismen, Automorphismengruppe 10
De�nition 5 kovarianter Funktor 10
De�nition 6 duale Kategorie, kontravarianter Funktor 11
De�nition 7 exakte Funktoren 11
Satz 6 kovarianter Hom-Funktor 12
Satz 7 Hom(M,−) ist linksexakt 12
De�nition 8 Projektive Moduln 12
Satz 8 Charakterisierungssatz projektiver Moduln 13
Satz 9 Freie vs projektive Moduln 14

Literatur

[1] Atiyah, M. ; McDonald, I. G.: Introduction to commutative algebra.
Addison-Wesley Publishing Company, 1969

[2] Eisenbud, David: Graduate Texts in Mathematics. Bd. 150: Com-

mutative algebra with a view toward algebraic geometry . New York-
Berlin-Heidelberg-London-Paris-Tokyo-Hong Kong-Barcelona-Budapest :
Springer-Verlag, 1994. � xvi,785 S.

[3] Lane, Saunders M.: Graduate Texts in Mathematics. Bd. 5: Categories
for the Working Mathematician. New York, NY : Springer-Verlag, 1971

[4] Thomas, Sebastian: Vorlesung Kommutative Algebra.
http://www.sigma-mathematics.de/semester6/komalg/.
Version: 2006. � [Vorlesung gehalten von Prof. Dr. Eva Zerz an
der RWTH Aachen im Wintersemester 2005/06]


